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SIMPLIFIED APPROACH TO DETERMINATION OF
CRITICAL AXTAL LOAD OF MARINE LINE SHAFTING

ABSTRACT

The critical axial load of the marine line shafting is ob-
tained by using simplified mechanical models of two span bars
with various supporting modes, loaded with constant compres-
sive force. The values of critical forces plotted as functions of
the ratios of span lengths, for several ratios of span flexural ri-
gidities, are shown in diagrams.
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1. INTRODUCTION

The propulsive force, produced by the work of the
propeller, is transmitted to the marine line shafting
and received by the thrust bearing. Thus, from me-
chanical point of view, the marine line shafting can be
considered a long compressively loaded bar. This calls
for the checking of elastic stability in the design of ma-
rine line shafting.

This paper deals with determination of critical ax-
ial load of the marine line shafting through consider-
ing three simplified mechanical models of two span
bars with various supporting modes, loaded with con-
stant axial compressive force. The spans have differ-
ent lengths and flexural rigidities.

In solving the problem, the governing fourth-order
differential equation is used. The constants, deter-
mined by using the boundary conditions, are ex-
pressed in terms of the bending moments at the sup-
ports. Formulating the conditions of continuity of the
elastic curve of the buckled bar produces a system of
homogenous linear equations with these moments as
unknowns. The condition of non-trivial solution to the
system demanding that its determinant equals zero
yields the equation from which the critical force is ob-
tained.

2. THE EQUATION OF THE ELASTIC
CURVE FOR THE BUCKLED BAR

The equilibrium equation of a buckled bar of con-
stant flexural rigidity EI, loaded with constant com-
pressive force F, takes the form
[EW"]" + Fw" =0 (1)

This equation can be used as the governing equa-
tion describing the behaviour of a span of the
multispan bar between the supports L and R. The span
under observation has been isolated from the bar by
cutting hinges into the bar over the supports and ap-
plying moments M; and My to replace removed con-
straints with adjacent spans (Figure 1)

M,

Figure 1 - Isolated span of the buckled bar

The general solution to the equation (1) is
w=Cj coskx+Cp sinkx+C3x+Cy 2)
where C; to Cy4 are constants, and

g 8
k| o)

From the boundary conditions

atx=Lw=0 4)
and in the range of small displacements being valid
atx=0,EIw"=-M;; atx=LEIw"=-Mp (5)
the constants are determined as follows:

M
Cy=-C4 = 2L
k2EI

atx=0,w=0;
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1 Mp M
Cr=— (.R— Lj (6)
k2Er\sinkl tgkl
Cy's M -Mp
k2EN
Substituting (6) in (2) and determining w' =%,

when x = 0 yields the slope of the elastic curve at the
left support

[ [
Wi = i+ R () ™

and when x = [ yields the slope of the elastic curve at
the right support

Ml M pl
Wi == (W) + = fi(w) ®)
where
u==kl )
fl(u)=1[1—i] (10)
ulu tgu
fz(u)=1[#—1j (11)
u\simu u

The equation (1) and its solution (2) can be ap-
plied in determining the slope of the elastic curve of
the buckled overhanging ends of the bar. A buckled
left overhang is shown in Figure 2.

Figure 2 - Left overhanging end of the buckled bar

The boundary conditions according to Figure 2
are:

atx=Lw=0; atx =1, M = Mp

(12)
atx=0,M=0; atx=0,Fr=0
Here the bending moment is
M =—-EIw" (13)

and transverse force Fr can be obtained from the
equations (Figure 3)

Fr =Fg cosa+ Fy sina (14)

Fp =—Fp sina+ Fy cosa (15)
With sina~tga=w', cosa~1, w'-w' ~0 and

Fo =‘{IM = M' it follows from (14) and (15)

Fr =Fg+Fiw' =M'-Fw'=-EIW" - Fw' (16)

M FT M FO
F. Fy

Figure 3 - Transverse force Fy, longitudinal force F,
shearing force Fy and normal force Fy

From the boundary conditions (12) expressed by
(2), respecting (13) and (16), the constants in (2) are
determined as follows:

Cy=h0h S0 a0 1

k2EI sinkl

(17)

If (17) is inserted in (2) and w' = % is determined,

the slope of the elastic curve at support is obtained for
x=1:

M pl
o R f3(u) (18)
where u = k[ and
: (.
ffuy==— (19)
utgu

3. THE CONTINUITY CONDITIONS

The condition of continuity of the elastic curve re-
quires the equality of the slopes of elastic curves of the
adjacent spans /;_; and /; at the support i (Figure 4)

WRi-1 =WLi
which expressed by (8) and (7) yields

/R [ I; ‘
M f2(“i—])+Mi[ £l fl(“i—l)“f_'fl(ui)}*
14 I I;
I
+Miiq ffZ(”i) =t (20)
l
where
F ;4 F I;
U; 1 =k'_1l'_1 =— ;u~=k~l~=——— (21)
i L 15 E Il_l (4 At E Il
I:»u IH [4' ll
> l
X N\ el
i-1 i i+1
Figure 4 - Adjacent spans [, and J;
I.-U IM lu [l
NG
i i+1

Figure 5 - Left overhanging end of the bar
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The condition of continuity of the elastic curve at
the support i of the left overhanging end of the bar
(Figure 5)

WRi-1 =WLi
expressed by (18) and (7) yields

3 I
M{— L ) i )}

/TN
+Miyq ffz(ui)=0 (22)
4

Finally, the fixed end of the bar has to be consid-
ered. From the boundary condition (Figure 6)

WIRJ‘ =0
expressed by (8) it follows
l; l;
M; ffz(“i)+Mi+1 ffl(ui)=0

1 4

(23)

i i+1

Figure 6 - Fixed right end of the bar

If the bar is fixed at the left end (Figure 7), from
the boundary condition

w,L,i =0
expressed by (7) it follows
L l;
M; 2 fi(i)+ My o f2(%i) =0
i

i

(24)

Wiz

i i+1

Figure 7. Fixed left end of the bar

4. DETERMINATION OF THE CRITICAL
FORCES

For a two span bar with fixed right end and over-
hanging, supported or fixed left end, equation (20) can
be set up for intermediate support, equation (23) for
fixed right end and equation (22) for overhanging and
equation (24) for fixed left end.

Setting up these equations yields a system of ho-
mogeneous linear equations with moments M;, M, ;

and M;_; (if it exists) as unknowns. The coefficients in

the equations are functions of «;_; and u;. The condi-

tion of non-trivial solution to the system demanding

that its determinant equals zero produces the equa-

tion Det (u;.j, u;) = 0. If u; ; is expressed by reference

variable u; respecting (9) and (3)
i | Li

W qi=yrs

(25)
li V14

equation Det (u;) = 0 is obtained. The critical force
follows from the smallest root u;, of this equation by

- EI
2 .
FCr =ui0 _2[
i

(26)

The described procedure of determining the criti-
cal forces will be applied on the three of the possible
mechanical models of the marine line shafting, as fol-
lows.

a) Two span bar with fixed right end and overhanging
left end

L, 1,

Figure 8 - Two span bars with fixed right end
and overhanging left end

Equation (22) for support 2 and equation (23) for
fixed end 3 (Figure 8) form a system from which re-
sults the following equation Det (u3) = 0

NS TR TN IS AR B S
up tgug JM\uy tgup tg Kuy
o Nid
(et
Smmuy Uy
C= 1—2,K=Cl—1
I I

From the smallest root up, of equation (27) follows

27)

EI
Fop =tty, —2 (28)
12
Diagram 1 presents F,, dependent on b and
(h+lz)

1
’]—2 The value of F,, can be computed from the plot-
1

Fcr(ll +12)2
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2
Fcr = Fcr(ll +[2) EIZ 5 (29)
EI, (h +1)
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Diagram 1

b) Two span bar with fixed right end and supported left
end

10) form a system resulting the following equation
Det (u3) =0:

Figure 9 - Two span bar with fixed right end
and supported left end

Equation (20) for support 2 and equation (23) for
fixed end 3 (Figure 9), respecting M; = 0, form a sys-
tem resulting the following equation Det (u3) = 0:

i X S f 3 gl E
up tgup Ku, tg Kuy uy tguy
2
(3T
Simnuy  uUp
C= I—Z,K:Cl—1
I Iy

From the smallest root uy, of equation (30) F,, fol-
2
Fop(lh +1 2)
p)

Iy g 23

and |—= in diagram 2. The value
(h+1p) I
of F., can be computed from this quantity by (29).

(30)

lows by (28). The quantity is plotted as

function of

¢) Two span bar with fixed ends

Equation (20) for support 2, equation (23) for
fixed end 3 and equation (24) for fixed end 1 (Figure

F % ek, Lk,
7 .

1 2 3

Figure 10 - Two span bars with fixed end
L -3 11 N o
uy tgup A\ Kupy tg Kup Ku, tg Kuy
2
1 4 w2 1 1 1 1 .
uy tgup uy tgupy \sinKup, Kuy
2
 —— : e~ -0 31)
Kuy tg Kup ) sinup up
C= LZ_,K=CI_1
I I

From the smallest root u;,, of this equation F,, fol-
lows by (28%. It can be computed from the quantity

Fcr(ll +12)
EI,

2 and /1—2 by (29).
(h+13) I

5. CONCLUSION

plotted in diagram 3 as function of

The analysis of the influence of the ratios of span
lengths and span flexural rigidities upon the critical
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force, which can be observed in diagrams 1, 2 and 3, than the one of marine line shafting with overhang-
results the following conclusions: ing end.
— The elastic stability of marine line shafting with sup- - The bigger flexural rigidity of the span on the side of
ported end carrying the propeller is multiply larger thrust bearing, with regard to the one of the span on
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the side of propeller, the smaller elastic stability of
marine line shafting.

— In marine line shafting with overhanging end carry-
ing the propeller, elastic stability decreases if the
length of overhang grows. In marine line shafting s
with supported end carrying the propeller, the high-
est elastic stability arises in the area of about equal
lengths of the spans.

SAZETAK

POJEDNOSTAVLJENI PRISTUP ODREDIVANJA
KRITICNOGA OSNOGA OPTERECEN]A
BRODSKOGA OSOVINSKOGA VODA

Kriticno osno opterecenje brodskoga osovinskoga voda do-
bije se pomocu pojednostavijenih mehanickih modela dva

nosaca oslonjenih na razlicite nacine, opterecenih konstant-
nom tlacnom silom. Vrijednosti kriticnih sila izraZene kao
funkcije omjera duljine nosaca, za nekoliko omjera krutosti
nosaéa s obzirom na savijanje, prikazane su dijagramima.

LITERATURE

[1] Chen, W.F., Lui, EM., Structural Stability, Elsevier,
New York/Amsterdam/London, 1987.

[2] Petersen, C., Statik und Stabilitit der Baukonstruktio-
nen, F. Vieweg und Sohn, Braunschweig, 1982.

[3] Saucha, J., Determination of elastic stability of bars with
variable cross section and multispan bars (in Croatian),
M.Sc. thesis, University of Zagreb, 1986.

[4] Timoshenko, S.P., Gere, J.M., Theory of Elastic Stabi-
lity, McGraw-Hill, New York, 1961.

132

Promet - Traffic — Traffico, Vol. 12, 2000, No. 3, 127-132




