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SIMPLIFIED APPROACH TO DETERMINATION OF 
CRITICAL AXIAL LOAD OF MARINE LINE SHAFTING 

ABSTRACT 

The critical axial load of the marine line shafting is ob­
tained by using simplified mechanical models of two span bars 
with various supporting modes, loaded with constant compres­
sive force. The values of critical forces plotted as functions of 
the ratios of span lengths, for several ratios of span flexuralJi­
gidities, are shown in diagrams. 
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1. INTRODUCTION 

The propulsive force, produced by the work of the 
propeller, is transmitted to the marine line shafting 
and received by the thrust bearing. Thus, from me­
chanical point of view, the marine line shafting can be 
considered a long compressively loaded bar. This calls 
for the checking of elastic stability in the design of ma­
rine line shafting. 

This paper deals with determination of critical ax­
ial load of the marine line shafting through consider­
ing three simplified mechanical models of two span 
bars with various supporting modes, loaded with con­
stant axial compressive force. The spans have differ­
ent lengths and flexural rigidities. 

In solving the problem, the governing fourth-order 
differential equation is used. The constants, deter­
mined by using the boundary conditions, are ex­
pressed in terms of the bending moments at the sup­
ports. Formulating the conditions of continuity of the 
elastic curve of the buckled bar produces a system of 
homogenous linear equations with these moments as 
unknowns. The condition of non-trivial solution to the 
system demanding that its determinant equals zero 
yields the equation from which the critical force is ob­
tained. 
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2. THE EQUATION OF THE ELASTIC 
CURVE FOR THE BUCKLED BAR 

The equilibrium equation of a buckled bar of con­
stant flexural rigidity EJ, loaded with constant com­
pressive force F, takes the form 

[ E/w"]" + Fw" = 0 (1) 
This equation can be used as the governing equa­

tion describing the behaviour of a span of the 
multispan bar between the supportsL andR. The span 
under observation has been isolated from the bar by 
cutting hinges into the bar over the supports and ap­
plying moments ML and MR to replace removed con­
straints with adjacent spans (Figure 1) 

F 
· - - - _._ 

' "f w 

Figure 1 - Isolated span of the buckled bar 

The general solution to the equation (1) is 

w=C1 coskx+C2 sinkx+C3x+C4 

where C1 to C4 are constants, and 

k=f-f 
From the boundary conditions 

X 

(2) 

(3) 

atx=O,w=O; atx = l,w = O (4) 

and in the range of small displacements being valid 

atx = O,E l w" = -ML; atx = l,Elw" = -MR (5) 
the constants are determined as follows: 

ML 
cl =-C4 =--

k2EI 

127 



J. Saucha, J. Rados, D. Milcic: Simplified Approach to Determination of Critical Axial Load of Marine Line Shafting 

C2 =-1-( MR- ML) 
k 2 EI sin kl tg kl 

C3=ML-MR 
k 2Eil 

(6) 

Substituting (6) in (2) and determining w' = dw, 
dx 

when x = 0 yields the slope of the elastic curve at the 
left support 

w'L = M Ll fl(u)+ M Rl f2(u) (7) 
EI EI 

and when x = l yields the slope of the elastic curve at 
the right support 

,. M Llf MRlf 
wR =-- 2(u)+-- 1(u) 

EI EI 

where 
u=kl 

f1 (u) =~(~ --1
-) 

u u tg u 

1 ( 1 1) f2(u) =- -.---
u smu u 

(8) 

(9) 

(10) 

(11) 

The equation (1) and its solution (2) can be ap­
plied in determining the slope of the elastic curve of 
the buckled overhanging ends of the bar. A buckled 
left overhang is shown in Figure 2. 

F 

~~..,_.l-...f · - · - - - ,.. 
X 

R 

Figure 2 - Left overhanging end of the buckled bar 

The boundary conditions according to Figure 2 
are: 

atx=l,w=O; atx=l,M=MR 

atx = 0, M = 0; atx = 0, Fy = 0 
(12) 

Here the bending moment is 

M = -Elw" (13) 

and transverse force F T can be obtained from the 
equations (Figure 3) 

Fy = FQ cos a+ FN sin a (14) 

FL =-FQ sina+FN cosa (15) 

With sina,tga=w', cosa,1, w'·w' ""0 and 

FQ = dM = M' it follows from (14) and (15) 
dx 

(16) 
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Figure 3- Transverse force Fr. longitudinal force FL, 
shearing force F0 and normal force FN 

From the boundary conditions (12) expressed by 
(2), respecting (13) and (16), the constants in (2) are 
determined as follows: 

MR 1 
C1 =C3 =C4 =O,C2 =---.- (17) 

k 2 EI smkl 

If (17) is inserted in (2) and w' = dw is determined, 
dx 

the slope of the elastic curve at support is obtained for 
X= [: 

WR = ~~[ f3(u) (18) 

where u = k l and 
1 1 

h(u)=--
u tg u 

3. THE CONTINUI'IY CONDITIONS 

(19) 

The condition of continuity of the elastic curve re­
quires the equality of the slopes of elastic curves of the 
adjacent spans l;.1 and l; at the support i (Figure 4) 

wR,i-1 = wl,i 
which expressed by (8) and (7) yields 

Mi- l li-1 h(ui- 1) + M;[ li-1 fl(ui-1) +}J_ f1 (u; )] + 
Ii- 1 Ii- 1 Ii 

[. 
+Mi+l__.!:_h(u;)=O (20) 

Ii 

where 

(21) 

< 
1,, I, 

( zs: 
~ 

i-1 i+1 

Figure 4- Adjacent spans 1;. 1 and l; 

l,_, , I;., 1,, 11 

i+1 

Figure 5- Left overhanging end of the bar 
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The condition of continuity of the elastic curve at 
the support i of the left overhanging end of the bar 
(Figure 5) 

(22) 

Finally, the fixed end of the bar has to be consid­
ered. From the boundary condition (Figure 6) 

wR,; =0 
expressed by (8) it follows 

l · l · 
M; _!__ h ( u;) + M i+ 1 _!__ ft ( u;) = 0 

I; I; 
(23) 

l, I, I ( 
<' zs 

=-
i+1 

Figure 6- Fixed right end of the bar 

If the bar is fixed at the left end (Figure 7), from 
the boundary condition 

w/_,; = 0 

expressed by (7) it follows 
l · l · 

M; _!_ fl(u;)+M;+l _!_ f2(u;) = 0 
I; I; 

(24) 

l,, I, 
'> 

i+1 

Figure 7. Fixed left end of the bar 

4. DETERMINATION OF THE CRITICAL 
FORCES 

For a two span bar with fixed right end and over­
hanging, supported or fixed left end, equation (20) can 
be set up for intermediate support, equation (23) for 
fixed right end and equation (22) for overhanging and 
equation (24) for fixed left end. 

Setting up these equations yields a system of ho­
mogeneous linear equations with moments M;, Mi+l 
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and M;_J (if it exists) as unknowns. The coefficients in 
the equations are functions of u;_1 and u;. The condi­
tion of non-trivial solution to the system demanding 
that its determinant equals zero produces the equa­
tion Del (ui-b u;) = 0. If u;-J is expressed by reference 
variable u; respecting (9) and (3) 

li- 1 [IE; u;_1 =u; - - (25) 
I; I;- l 

equation Det (u;) = 0 is obtained. The critical force 
follows from the smallest root u;0 of this equation by 
(3) 

F = u 2 EI; (26) 
er io 2 

I . 
l 

The described procedure of determining the criti­
cal forces will be applied on the three of the possible 
mechanical models of the marine line shafting, as fol­
lows. 

a) Two span bar with fixed right end and overhanging 
left end 

F l, I , l, I , I 
~--------~~------------~ 

~ 

2 

Figure 8- Two span bars with fixed right end 
and overhanging left end 

3 

Equation (22) for support 2 and equation (23) for 
fixed end 3 (Figure 8) form a system from which re­
sults the following equation Del (u2) = 0 

l u12 - tg ~t2 l[ u12 - tg 
1
u2 J-c tg ~uJ-

{ sin1u2 - :J2 = 0 (27) 

C= ~.K=C!l_ 
{i; 12 

From the smallest root u20 of equation (27) follows 
2 EI2 

Fer = u20 f2 (28) 
2 

Diagram 1 presents Fer dependent on 
12 

and 
(ll + 12) it· The value of Fer can be computed from the plot-

. F (l +l2)2 
ted quantity er 1 as follows: 

EI2 

Fer =[Fcr(/1 +12)2] EI2 (29) 
EI2 Ul +12)2 
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30~~--~------~~------~--~--~~--~--~--~~--~--~--~~ 

1\ I 

12 

0.5 I 0.6 
_2_ 

0.9 0.95 0.2 0.3 0.4 0.7 0.8 

11+12 

Diagram 1 

b) Two span bar with fixed right end and supported Left 
end 

F 1,. I, 1, I, ~ 
~~--------------~~------------~~ 

2 

Figure 9- Two span bar with fixed right end 
and supported left end 

3 

Equation (20) for support 2 and equation (23) for 
fixed end 3 (Figure 9), respectingM1 = 0, form a sys­
tem resulting the following equation Det (u2) = 0 : 

( u12 - tg 
1
u2 I c{ K~2 - tg ~u2 ) -( u12 - tg 

1uJ ]-
{ sin1u2 - u12 r = 0 (30) 

C = {J;, K =C.!.!_ 
v~; l2 

From the smallest root u20 of equation (30) Fer fol­
. F .(l +l ) 2 . 

lows by (28). The quantity e' 1 2 
IS plotted as 

£[2 

function of 12 and {!;in diagram 2. The value 
u1+l2) vr; 

of Fe,. can be computed from this quantity by (29). 

c) Two span bar withfLXed ends 

Equation (20) for support 2, equation (23) for 
fixed end 3 and equation (24) for fixed end 1 (Figure 
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10) form a system resulting the following equation 
Det (u2) = 0: 

~~~~----I,._I, __ ~~----~-·G----~-
~ ~ ~ 

10"/l 7 3 

Figure 10 - Two span bars with fixed end 

(
1 1 y 1 1 rrr 1 1 ) 

C u2 - tg u2 l Ku2 - tg Ku2 '""'l Ku2 - tg Ku2 + 

( 1 1 JJ 2( 1 1 r 1 1 )
2 

+ u2 - tg u2 - C u2 - tg u2 sin Ku2 - Ku2 -

rr 1 1 r 1 1 )
2 

-..... l Ku2 - tg Ku2 sin u 2 - u2 = 0 (31) 

C = {!2, K = C !1_ vi; l2 

From the smallest root u20 of this equation Fer fol­
lows by (281. It can be computed from the quantity 

Fer (ll + 12 ) plotted in diagram 3 as function of 
El2 

l2 and fZi by (29). 
(l1+l2) vi, 

5. CONCLUSION 

The analysis of the influence of the ratios of span 
lengths and span flexural rigidities upon the critical 
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Diagram 2 
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Diagram 3 

force, which can be observed in diagrams 1, 2 and 3, 
results the following conclusions: 

than the one of marine line shafting with overhang­
ing end. 

- The elastic stability of marine line shafting with sup­
ported end carrying the propeller is multiply larger 
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- The bigger flexural rigidity of the span on the side of 
thrust bearing, with regard to the one of the span on 
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the side of propeller, the smaller elastic stability of 
marine line shafting. 
In marine line shafting with overhanging end carry­
ing the propeller, elastic stability decreases if the 
length of overhang grows. In marine line shaftings 
with supported end carrying the propeller, the high­
est elastic stability arises in the area of about equal 
lengths of the spans. 

SAZETAK 

POJEDNOSTAVIJENI PRISTUP ODREDW ANJA 
KRITICNOGA OSNOGA OPTERECENJA 
BRODSKOGA OSOVINSKOGA VODA 

Kriticno osno opterecenje brodskoga osovinskoga voda do­
bije se pomocu pojednostavljenih mehanickih modela dva 

132 

nosaca oslonjenih na razliCite naCine, opterecenih konstant­
nom tlacnom silom. Vrijednosti kriticnih sila izraiene kao 
funkcije omjera duljine nosaca, za nekoliko omjera krutosti 
nosaca s obzirom na savijanje, plikazane su dijagramima. 
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