
ABSTRACT
Few existing research studies have explored the re-

lationship of road section level, local area level and ve-
hicle level risks within the highway traffic safety system, 
which can be important to the formation of an effective 
risk event prediction. This paper proposes a framework 
of multi-level risks described by a set of carefully select-
ed or designed indicators. The interrelationship among 
these latent multi-level risks and their observable indica-
tors are explored based on vehicle trajectory data using 
the structural equation model (SEM). The results show 
that there exists significant positive correlation between 
the latent risk constructs that each have adequate con-
vergent validity, and it is difficult to completely separate 
the local traffic level risk from both the road section level 
risk and vehicle level risk. The local and road level in-
dicators are also found to be of more importance when 
risk prediction time gets earlier based on feature impor-
tance scoring of the LightGBM. The proposed conceptual 
multi-level indicator based latent risk framework gener-
ally fits with the observed results and emphasises the im-
portance of including multi-level indicators for risk event 
prediction in the future.

KEYWORDS
traffic safety; multi-level risk; safety indictor; SEM;  
vehicle trajectory.

1. INTRODUCTION
Highway traffic safety has been a critical issue 

affecting public health globally for a long time [1], 
which is a hot and challenging topic for a variety 

of researchers and technical staff. Many previous 
studies on traffic safety have relied on historical 
traffic accident data, which has the advantage of 
intuitiveness, but is usually limited in sample size 
(as a traffic accident is a small probability event) 
and might ignore some near-crash events (or seri-
ous conflicts) that can evolve into crashes due to the 
high uncertainty during vehicle driving [2]. Thanks 
to the development of the information acquisition 
technology, more driving data with traffic conflicts 
of different severity have become available, such as 
naturalistic driving data [3] and vehicle trajectory 
data [4]. Naturalistic driving data are usually collect-
ed by sensor-equipped vehicles driven by recruited 
participants, and can provide a moving status of the 
subject vehicle and its surrounding vehicles, as well 
as driver behavioural data of the subject vehicle [5]. 
Vehicle trajectory data are generally obtained by 
video camera placed on the nearby building or more 
recently by drones, which provides a wider range 
trajectory data that covers all vehicles in the road 
section under surveillance [4]. Such enriched data 
sources have facilitated more diversified techniques 
in analysing driving safety problem.

Traffic conflict technique (TCT) is one of the 
most popular techniques to diagnose a driving 
safety problem at the vehicle level [6]. TCT gen-
erally utilises surrogate safety measures (SSM) 
to identify and quantify traffic conflicts or risk 
events, which are statistically related to crashes 
[7]. The SSM can be classified into sub-categories, 
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gistic regression models to examine the relation-
ship of high risk event occurrence and the traffic 
flow characteristics in front of the subject vehicle 
[23]. Also with HighD data, Hu et al. employed 
a binary logistic model to quantify the relation-
ship between the occurrence of traffic conflict and 
lane-level traffic states [24]. Chen et al. explored 
the vehicle operation level contributing factors to 
lane-changing risks via random parameter logit 
models using HighD data [15]. Similarly, Chen et 
al. developed mixed binary logit models to inves-
tigate risk during the lane-changing process from 
the perspective of vehicle group using the NGSIM 
data [25].

It can be seen from above that the existing re-
search studies generally assess driving safety from 
either the vehicle operation level or the road sec-
tion traffic flow level. However, few have explored 
the multi-level risk relationship within the safety 
system, which is feasible with the increasing avail-
ability of large-scale vehicle trajectory data. From 
the spatial perspective, the risk influential space 
scope for a subject vehicle can be divided into 
three levels, including the subject vehicle itself, 
the local area of the subject vehicle covering its 
surrounding vehicles and the road section in which 
the subject vehicle is located. A thorough under-
standing of the interrelationship of these multi-lev-
el risks can fill in the gap and shed light on the 
comprehensive formation of risk event predic-
tion. This paper explores the potential relationship 
among these risks of different levels based on ve-
hicle trajectory data using the structural equation 
model (SEM), which is a quantitative statistical 
technique that can be designed to confirm concep-
tual hypotheses [26] (details of which will be fur-
ther discussed in the next section). The remainder 
of the paper is organised into the following sec-
tions: Section 2 describes the proposed multi-level 
risk framework and SEM modelling methodology. 
Section 3 provides the data preparation details of 
the model validation. The modelling results and 
discussions are presented in Section 4 and Section 
5 concludes the paper.

2. METHODOLOGY
In this section, the framework of multi-level 

risks and representing indicators is firstly proposed 
for safety assessment (as shown in Figure 1), and the 
SEM modelling technique to analyse their latent 
relationships is then presented. Specifically, in the 

such as the time-based, distance-based and decel-
eration-based SSM, based on their measurement 
units. Frequently used time-based SSM includes 
time-to-collision (TTC) [8], time headway (THW) 
[9] and post-encroachment time (PET) [10], etc. 
For example, the distance-based SSM includes a 
proportion of stopping distance (PSD) [11] and po-
tential index of collision with urgent deceleration 
(PICUD) [12]. Deceleration rate to avoid the crash 
(DRAC) [13] and the ratio of DRAC to maximum 
deceleration [6] are typical deceleration-based 
SSMs. For a given traffic scenario, the SSM is usu-
ally calculated and compared with the pre-deter-
mined thresholds to identify and determine the se-
verity of the traffic conflict. These thresholds can 
have a great impact on the evaluation results and 
can be obtained from statistical percentiles [14], 
fitted distributions [4] or cluster analysis [15]. As 
the SSMs generally have their applicable condi-
tions and limitations [16], they can be fused as a 
composite to identify high-risk events and achieve 
more reliable safety evaluation [17, 18].

Data driven techniques, such as machine learn-
ing and deep learning, have also been developed 
to predict driving risk status. On the basis of the 
STISIM simulation driving data, Zhou et al. divid-
ed the real-time driving sequence signal into the 
safe and dangerous modes by establishing a con-
ditional random field (CRF) model [19]. Ning et 
al. constructed the expected score function of the 
driving risk through time series difference learn-
ing (TDL) and used this function to evaluate the 
degree of driving risk in real time [20]. Lee et al. 
trained the multi-layer perceptron neural network 
(MPNN) based on the observed sample braking 
levels from the NGSIM and utilised the developed 
network model in a real time driving risk estima-
tion [21]. On the basis of the Matlab simulation, 
Fu et al. constructed a risk status classification 
algorithm based on the neural network model, 
considering both driving safety and comfort [22]. 
However, although these methods can produce 
high-accuracy prediction results, they are sensitive 
to the transferability of the data and can hardly 
provide insights into the failure mechanism of the 
high risk events. Statistical modelling methods, on 
the other hand, are more model-driven and have 
better model interpretability, which have been 
widely employed to analyse the mechanism of risk 
development in driving. Using vehicle trajectory 
data from HighD, Yu et al. developed various lo-
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the interrelationship of multi-level risks based on 
multi-level indicators, whereas effective fusion of 
different level indicators for risk prediction would 
be left to future work.

2.1 Road section level risk 
Traditional road level indicators generally in-

clude the average (avg) speed, standard deviation 
(S.D.) of speed, variation coefficient (V.C.) of speed 
and the longitudinal distance between neighbour-
ing vehicles within the traffic flow. Specifically, the 
average value of vehicle speed directly reflects the 
operation efficiency of traffic flow; dispersion co-
efficient of traffic flow, including S.D. and V.C. of 
vehicle speed, have been proved to reflect the safety 
state of traffic flow to some extent [23]; the longi-
tudinal distance between vehicles, including their 
average and minimum distance, measures the spa-
tial proximity of neighbouring vehicles and partly 
reflects the stability of traffic flow.

In this study, the above statistical indicators are 
calculated based on different measurement scales 
(see Table 1), including (1) vehicles in front of the 
subject vehicle (up to the end of the road segment), 
and abbreviated as FS hereinafter; (2) vehicles on 
the subject lane and in front of the subject vehicle, 
and abbreviated as FL; (3) vehicles in the whole 
road segment (from the start to the end of the road 
segment the subject vehicle is driving in; the road 

study, the multi-level risks refer to the quantified 
driving risk for a subject vehicle from the perspec-
tive of space scopes, including road section (macro) 
level, local area (meso) level and vehicle (micro) 
level risks. Each level risk can then be described 
with a set of observable indicators from differ-
ent measurement dimensions, i.e. from spatial and 
temporal distribution (ST distribution) of the traffic 
flow to individual motion status and characteristics 
of the vehicle. All required data for indicator calcu-
lation are assumed to be able to be collected in real 
time via the Internet of Vehicles (IoV). 

In order to establish the relationship among 
the multi-level risks, conflict driving samples will 
be obtained based on the commonly used surro-
gate safety measure TTC, which will be detailed in 
Section 3. For each conflict driving sample, a set 
of multi-level indicators will be selected and calcu-
lated to reflect the multi-level risks of the sampled 
subject vehicle. Considering the wider variety in 
surrogate safety measures in longitudinal scenarios 
than in lateral scenarios (which directly affects the 
selection of risk indicators for the vehicle level), 
only longitudinal conflict cases are considered in 
the study. The details of multi-level risks and repre-
senting indicators, as well as their interrelationship 
exploration methodology SEM, will be presented in 
the following sections. It should be noted that the 
main purpose of this paper is to explore and validate 
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Figure 1 – Framework of multi-level risks and representing indicators for safety assessment
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graph, denoted as ,cC k k
K

1= =" ,  where K designates 
the total number of vehicles (nodes). Denote the 
position of the mass centre of vehicle ck as (xk,yk), 
its longitudinal and lateral speed as vxk and vyk, its 
longitudinal and lateral acceleration rate as axk and 
ayk, and its lane number as LLk. In the study, the 
inner lane is indexed as 1 and the indices of other 
lanes are increased by one per lane from the inside 
to the outside. Any two vehicle nodes are assumed 
to be linked with an undirected edge only if there 
exist potential longitudinal and lateral interactions 
between them. Mathematically, an edge between 
nodes ci and cj exists if one of the following rules 
is met:

1) : & , ,min maxLL LL c LL LL x x x x xC < <i j k k i i j k i j 4!= = =^ ^ ^ ^h h hh" ,

: ;LL LL x x d LL LL v
LL LL a LL LL v LL LL a

1 1 2 0
0 0 0

2) < <
< > >

i j i j i j yi

i j yi i j yj i j yj

0

0 0

- = - -
- - -^ ^

^
^h h
h

h

Rule 1 means there exists an edge between two 
vehicle nodes if they are driving on the same lane 
and are located next to each other. Rule 2 accounts 
for the adjacent vehicles which are driving on the 
neighbouring lanes within a certain distance d 

segment is predefined by the dataset which will be 
discussed in more detail in Section 3) and abbrevi-
ated as WS; (4) vehicles on the subject lane in the 
whole road segment and abbreviated as WL. For FS 
and WS measurement scale, in addition to vehicles 
on all lanes, indicators are also calculated among 
lanes to obtain difference measures between adja-
cent lanes, which have been shown to have impact 
on real-time crashes [24].

The statistical indicators above generally reflect 
the overall driving characteristics of the vehicles in 
the section. However, the complexity in interrela-
tionship within the traffic flow is hard to capture. 
In light of this, a road section level indicator, traffic 
flow instability index, is proposed based on the the-
ory of complex networks [29] as follows.

Construction of traffic flow graph  
of the road section

A global coordinate system is first established 
taking the upper left corner of the road section as 
the origin, the vehicle driving direction as the pos-
itive x-axis and its 90° clockwise rotation direction 
as the positive y-axis (see Figure 2). Take all vehicles 
within the measurement scale as the nodes of the 

Table 1 –  Road section level indicators for consideration

Scale Indicator variable Definition

FS avg_xVelo_FS, std_xVelo_FS, vc_ xVelo_FS,  
avg_dist_FS, min_dist_FS, FI_FS

avg, S.D., V.C. of speed, avg dist., min. dist. between vehs, 
and flow instability index for FS

FL avg_xVelo_FL, std_xVelo_FL, vc_ xVelo_FL,  
avg_dist_FL, min_dist_FL, FI_FL

avg, S.D., V.C. of speed, avg dist., min. dist. between vehs, 
and flow instability index for FL

WS avg_xVelo_WS, std_xVelo_WS, vc_ xVelo_WS,  
avg_dist_WS, min_dist_WS, FI_WS

avg, S.D., V.C. of speed, avg dist., min. dist. between vehs, 
and flow instability index for WS

WL avg_xVelo_WL, std_xVelo_WL, vc_ xVelo_WL, 
 avg_dist_WL, min_dist_WL, FI_WL

avg, S.D., V.C. of speed, avg dist., min. dist. between vehs, 
and flow instability index for WL
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Figure 2 – Diagram of the traffic flow network graph
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front, left backward, right front and right backward 
vehicles, i.e. c3, c4, …, c9 for subject vehicle c6 in 
Figure 3. Similar to statistical indicators for different 
measurement scales defined in Section 2.1, indicators 
including avg, S.D. and V.C. of speed, avg dist. and 
min. dist. are calculated for the vehicles within the 
local area of the subject vehicle.

In addition to the statistics of the driving charac-
teristics of surrounding vehicles, a local traffic in-
stability index is also defined considering the spatial 
distribution of these vehicles. Based on the two-di-
mensional Gaussian distribution probability density 
function, the spatial proximity between the surround-
ing vehicle and the subject vehicle can be measured 
as [30]:

,; expX X Xf 2
1

2
1

j j j
x y

T 1n n nrv vK K= - - --^ ^ ^h h h% /  (4)

/
,

/
X v v

S
v v

S
2 2j

xj x

x

yj y

T
y

0

0

0

0j j

=
+ +

f ^ ^h h p  (5)

where Xj measures the relative longitudinal and la- 
teral time distance between the subject vehicle c0 and 
its surrounding vehicle cj. /S x x L L 2x j j

0
0 0

j = - - +^ h  
and /S y y U U 2j jy

0
0 0

j = - - +^ h  measures the spatial 
longitudinal and lateral distance between the two 
vehicles, respectively. L0 and Lj are the lengths of 
c0 and cj, respectively, U0 and Uj are the widths of 
c0 and cj, respectively. μ and Λ=diag(σx

2,σy
2) desig-

nates the mean and covariance of the two-dimen-
sional Gaussian distribution and is set to μ=(0,0)T 
and Λ=diag(1,1) in the study.

Based on the vehicle proximity function de-
fined above and the theory of information entropy 
[31], the local traffic instability index (LTI) can 
then be defined considering the speed difference 
between the subject vehicle and all of its surround-
ing vehicles as well as the uncertainty in their spa-
tial distribution:

; ; ; ;logX XLTI v v f fj jx xj
j

n

0
1

20

n nK K= - -
=

^ ^ ^h hh6 @/  (6)

where n0 represents the number of surrounding ve-
hicles of the subject vehicle c0.

(which is set to 150m in the study) and have lat-
eral velocities or accelerations in opposing direc-
tions. As can be noted in Figure 2, although the ad-
jacent-lane vehicle pairs c3-c5 and c7-c9 are located 
within the required distance, they do not meet the 
condition on lateral movement direction, and as 
a result no connection is established within these 
pairs.

Each edge connecting two nodes is assigned a 
given weight to reflect the intensity of interaction 
between the two vehicles, which is defined as the 
speed difference between the two vehicles within 
a unit distance:

w
x x y y

v v
ij

i j i j

xjxi
2 2=

+- -
-

^ ^h h  (1)

Calculation of the traffic flow instability index 
Based on the defined graph, unit vertex strength 

of each vehicle can be obtained as follows: 

/W w di ij
j N

i
i

=
!

/  (2)

where Ni designates the set of indices of adjacent 

nodes of the node ci. wij
j Ni!

/  represents the sum of 

weights on the edges connecting the node, also re-
ferred to as vertex strength of node ci. di designates 
the degree of node ci or the number of connections 
node ci has with other nodes.

Taking the squared degree of each vehicle node 
as the weight, the weighted average of unit vertex 
strength of all vehicle nodes ck k

K
1=" , in the graph 

can be calculated as below and is used as an index 
of traffic flow instability (FI) within the measure-
ment scale.

FI
d
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2.2 Local area level risk
The local area of the subject vehicle takes into 

account its surrounding vehicles within a certain lon-
gitudinal distance, including its front, backward, left 
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0 Driving direction
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Figure 3 – Diagram of the area of local traffic for veh c6
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/
PSD

v MADR
S

2x x

x
j

0
2 0

0
=  (9)

Potential Index of Collision with Urgent De-
celeration (PICUD) is also considered as a vehicle 
level risk indicator, which characterises the final 
distance between the subject vehicle and its leading 
vehicle if both of them decelerate under maximum 
braking force [12]. 

PICUD S MADR
v

MADR
v t v2 2x

j

x
j

xj

x

x
h x

0
2

0

2

0
0= + - -  (10)

where th is the driver reaction time of the subject 
vehicle and is set to 1s in the study. 

Time based
TTC is a typical time based indicator in mea-

suring risk trend. However, it is not included in the 
vehicle level indicator as it has been employed to 
define and obtain conflict driving samples in the 
study as mentioned before. Instead, another typical 
time-based safety indicator Time Headway (THW) 
is selected, which characterises the remaining time 
for the two vehicles to collide if the leading vehicle 
suddenly stops (a hypothetically extreme condition) 
while the subject continues driving at current speed 
along the current trajectory [9].

THW v
S

x
x
j

0

0
=  (11)

2.4 Risk modelling with multi-level 
indicators based on SEM

Given the framework of multi-level risks 
and representing indicators described above, the 
multi-level indicators can be thought to be the ob-
served reflections of the latent multi-level risks, 
and the relationship among these multi-level risks 
are of interest to our study that needs further val-
idation. Such research question generally fits into 
the scope of the confirmatory factor analysis (CFA), 
which belongs to the family of structural equation 
model (SEM) analysis [26]. In a CFA model, multi-
ple items are created for each theory-derived latent 
factor constructs and the correlations among latent 
factors can be assessed by their covariance matrix. 

2.3 Vehicle level risk
As mentioned above, there has been a diversity 

of surrogate safety measures to evaluate the safety 
status of driving vehicles. In the study, vehicle level 
indicators are selected from deceleration based, dis-
tance based and time based surrogate measures. As 
the study only considers the longitudinal scenario, 
these vehicle level indicators are calculated for the 
pair of the subject vehicle c0 and its leading vehicle 
cj only. 

Deceleration based
Deceleration based measures focus on the emer-

gency of the evasive action (braking) the vehicle 
needs to take to prevent the occurrence of crash. 
Deceleration Rate to Avoid the Crash (DRAC) cal-
culates the required deceleration rate for the subject 
vehicle to avoid crash with its leading vehicle that 
retains the same speed and trajectory [13]:

DRAC
S

v v
2x

j

x
j

x xj0
0

0
2

=
-^ h  (7)

It can be noted that DRAC takes a valid value 
only when the traveling speed of the subject vehicle 
exceeds that of its leading vehicle (which can lead 
to a potential collision). 

Maximum deceleration index (MDI) [6] can 
then be calculated as follows:

MDI MADR
DRAC

x

x
j

0

0
=  (8)

where MADRx
0 represents the braking capability 

(the maximum deceleration rate) of the subject ve-
hicle. It should be noted that the value of the MADR 
are set according to different types of vehicles to ac-
count for potential vehicle size effects in risk anal-
ysis, and is set to 3.4m/s2 for cars and 2.4 m/s2 for 
trucks [15].

Distance based
Proportion of Stopping Distance (PSD) calcu-

lates the ratio between the remaining distance for 
the two vehicles to collide if the leading vehicle 
suddenly stops (a hypothetically extreme condition) 
and the minimum stopping distance of the subject 
vehicle [11]. 

Table 2 – Local area level indicators for consideration

Indicator variable Definition

avg_xVelo_GP, std_xVelo_GP, vc_ xVelo_GP, avg_dist_GP, 
min_dist_GP

avg, S.D., V.C. of speed, avg dist., and min. dist. between 
vehs for the local area of the subject vehicle

LTI Local traffic instability index
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dicator Iij when the latent risk status Ri undertakes 
one unit change. eij designates the error term for the 
jth observed indicator of the ith level risk. The re-
gression weight of each error term is set to 1. Ac-
cordingly, the set of multi-level indicators can then 
be formulated as follows:

, , ,

I R

I R
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(13)

Specifically, the multi-level risk latent variables 
are assumed to be normally distributed and their 
scale are standardised and follow the restrictions as 
below:

( ) ; ( )R RE COV
0
0
0

1
1

1
21

31 32

W W
W W

= = =
J

L

KKKKKKK
f

N

P

OOOOOOO
p  (14)

To achieve proper identification of the formu-
lated model, no cross loadings are assumed and for 
each of the latent variable (factor), one of its factor 
loading is fixed to 1.

CFA helps bridging the gap between theory and 
observation by investigating the relations among a 
priori specified, theory driven latent and observed 
variables, and has become an important analysis 
tool for many social and behavioural science appli-
cations [26, 32]. 

As justified above, in this study, the multi-level 
risks, including road section level risk, local area 
level risk and vehicle level risk, are modelled as la-
tent variables (also called factors in SEM) which are 
assumed to be correlated (see Figure 4). Multi-level 
indicators specified in Section 2.1 to 2.3 are treated 
as observed variables, also referred to as fixed co-
variates in statistics, which form the multi-level risk 
latent variables. The latent variables are linked to 
observed variables using the measurement equation 
as follows:

I R eij ij i ijm= +  (12)

where Ri, i=1,2,3, refers to the road section lev-
el risk (R1), local area level risk (R2) and vehicle 
level risk (R3) respectively. Iij, j=1,2,…, designates 
the jth observed variable (i.e. the specified indica-
tors) of the ith risk latent variable. λij represents 
factor loading, which measures how much of the 
variability in the jth observed indicator is explained 
by the ith level risk status; it can also be interpreted 
as the amount of unit change in the observed in-

Table 3 – Road section level indicators for consideration

Measurement category Indicator variable Definition

Deceleration-based
DRAC Deceleration rate to avoid the crash

MDI Maximum deceleration index

Distance-based
PSD Proportion of stopping distance

PICUD Potential indicator of collision with urgent deceleration

Time-based THW Time Headway

e11 e12 e21 e22 e31 e32

I11 I12 I21 I22 I31 I32

λ12λ11 λ22λ21 λ32λ31

R1 R2 R3

Figure 4 – Conceptual multi-level driving risk model
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multi-level indicators proposed in Section 2. More 
details of the dataset can be found at the HighD 
website [36].

(0,0)

Figure 5 – HighD coordinate system

As discussed in the previous section, the interrela-
tionship of multi-level indicators in longitudinal con-
flict cases are of interest to our study, and the longi-
tudinal conflict samples were extracted based on the 
following steps:

 – Longitudinal driving sample extraction: Lane 
changing segments of the subject vehicle were 
firstly removed from the original trajectory data. 
In the study, the starting point of a lane change 
segment is defined as 5 seconds prior to the mo-
ment when the boundary of the subject vehicle 
begins to enter the target lane, and the ending 
point is 5 seconds after the moment when the 
whole body of the subject vehicle enters the target 
lane. For the remaining trajectory data, only the 
observation segments that have existing preced-
ing vehicle (with valid TTC value in highD) were 
kept for the following conflict and non-conflict 
vehicle sample extraction. 

 – Conflict sample extraction: Based on the longitu-
dinal driving data obtained from step 1), conflict 
and non-conflict samples were classified using 
TTC. A TTC threshold of 4 seconds was select-
ed in this study to obtain sufficient conflict cases 
[24], and the moment when TTC becomes lower 
than 4 seconds is defined as the observation mo-
ment (t0) of the conflict driving sample.

 – Non-conflict sample extraction: Observation seg-
ments within 20 seconds before and after the t0 
moment of conflict samples were removed first 
considering the potential risk impact within these 
data. For each continuous longitudinal driving 
segment in the remaining trajectory observations, 
the moment when TTC reaches the minimum val-
ue is defined as the observation moment (t0) of the 
non-conflict driving sample.

The performance of the established CFA mod-
el can be assessed by three parts, including model 
fitness, convergent and discriminant validity. The 
model fitness can be judged by GFI, RMSE and 
other typical indicators that have acceptable value 
ranges [33]. If the overall fitting of the model is 
acceptable, the internal validity of the factor con-
structs can then be further examined, including con-
vergent and discriminant validity [34]. Convergent 
validity measures how well a set of indicators con-
verge in explaining their common latent factor (usu-
ally judged by checking if the observed indicators in 
the same factor construct share a high proportion of 
variation), while discriminant validity, on the oth-
er hand, measures how divergent the indicators are 
from other indicators that assess different constructs 
[33]. Average variance extracted (AVE) and com-
posite reliability (CR) for each latent construct are 
usually computed to assess convergent validity, and 
an AVE over 0.5 and CR over 0.7 indicates a good 
convergent validity of the construct. Discriminant 
validity of a given construct can then be evaluated 
by comparing the square root of its AVE with its 
correlation with other latent constructs, and a lower 
correlation compared with square root of AVE in-
dicates a better discriminant validity. More details 
of calculation of the model fitness indicators and 
construct validity indicators can be referred to other 
resources [33] due to space limit of the paper.

3. DATA PREPARATION
The data in the study was obtained from HighD 

dataset, which provides high-resolution trajectory 
data of more than 110,500 vehicles collected at six 
different locations on freeways near Cologne, Ger-
many, from 8 a.m. to 5 p.m. during 2017 and 2018 
with sunny and windless weather, using a drone 
[35]. The road section at each location is straight in 
alignment, approximately 420m in length, and with-
out any on-ramps and off-ramps. The road sections 
include both two-lane and three-lane segments, but 
only three-lane highway segments were included in 
the analysis to standardise the extraction of traffic 
flow data. The trajectory data of each vehicle con-
tains information including vehicle type, longitu-
dinal (x) and lateral (y) positions (with the coordi-
nate system presented in Figure 5), driving direction 
and lane ID, ID of surrounding vehicles and TTC, 
etc., which covers the data needed to calculate the 
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ness and construct validity. In the study, the process 
of item removal was based on manual adjustment, 
which allows certain individual items to be retained/
removed on the basis of previous research findings 
to achieve better model fitting, while maintaining 
reasonable explainability of the model. Specifically, 
in accordance with [33], an item would be consid-
ered for removal from the model if its standardised 
weight is estimated to be under 0.4 and at the same 
time its modification index (MI, which is available 
in the Amos report) is close to zero, which criteria 
usually suggest a small explanatory power of the 
item to both the factor it belongs to and other factor 
constructs. After such process of repeated trials, the 
final driving risk CFA model results are presented in 
Figure 6 and Tables 4–6. To keep consistent the chang-

A total of 356 conflict samples and 5,397 
non-conflict cases were finally obtained following 
the steps above.

4. RESULTS AND DISCUSSION

4.1 Validation of the multi-level indicator 
based latent risk constructs 

The confirmatory factor analysis of latent risk 
constructs was carried out with AMOS [37] by us-
ing the conflict samples obtained in Section 3. Given 
the large number of indicators with limited sample 
size, some of the items (indicators) in each factor 
construct should be removed from the measurement 
model in order to fulfil the requirement of model fit-

e1

e4 e5

e6

e7

e8

e2 e3

Std_xVelo_WS

R1-RoadSection

R3-Vehicle

R2-LocalArea

FI_WSStd_xVelo_FS

LTI avg_dist_group

iPSD

nTHW

nPICUD

Figure 6 – The estimated driving risk CFA model

Table 4 – Descriptive statistics for all selected indicators in the driving risk model

Indicators Description Mean Std.Dev. Min Max

std_xVelo_FS [m/s] S.D. of speed for vehicles in front of the 
subject vehicle 3.745 1.766 0.042 11.004

std_xVelo_WS [m/s] S.D. of speed for vehicles in the whole road 
segment 4.118 1.610 1.438 11.208

FI_WS Traffic flow instability index 0.110 0.054 0.033 0.398

LTI Local traffic instability index 7.687 9.524 0.097 63.838

avg_dist_group [m] Average speed of vehicles within the local 
area of the subject vehicle 43.971 29.565 9.750 155.228

iPSD Inverse of proportion of stopping distance 6.883 7.628 0.001 40.967

nTHW [s] Negative time headway -1.074 0.929 -8.160 -0.120

nPICUD [m] Negative potential indicator of collision with 
urgent deceleration 15.085 25.638 -323.735 66.161
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estimates of weights (or called factor loadings) of 
all indicators are larger than 0.60, suggesting these 
indicators have relatively strong correlation with 
their corresponding latent multi-level risks. Results 
above indicate that the established model fitting ba-
sically meets the requirement and can be used for 
the subsequent analysis.

Table 6 show that average variance extracted 
(AVE) of each latent factor is above 0.50 and their 
composite reliability (CR) is close to or over 0.70, 
indicating that the convergent validity of each factor 
construct is adequate [33], meaning the indicators 
within the same parent factor correlate well with 
each other, or each factor construct is well explained 
by its observed selected indicators. As to discrimi-
nant validity, the correlation estimates of all factor 
pairs range from 0.41 to 0.84 (statistically signifi-

ing trend in indicators and driving risk in the model 
(i.e. higher indicator value goes with higher driving 
risk), inverse PSD (iPSD), negative THW (nTHW) 
and negative PICUD (nPICUD) were utilised in the 
model. It should be noted that road section level 
indicators were calculated at 1 second before the 
observed moment (t0) to account for the potential 
effect of flow propagation, while local traffic and 
vehicle level indicators were calculated at the ob-
served moment (t0) of the conflict sample as defined 
in Section 3.

From Table 5, it can be seen that all level indica-
tors are statistically significant at the 0.001 level, 
and common model fit indicators including χ2⁄df, 
GFI, RMSEA, Standardised RMR (SRMR), CFI 
and NFI can generally meet or are close to the sug-
gestion value [33]. In addition, the standardised 

Table 5 – Modelling results of the driving risk model

Measurement
equation factor loadings

Unstandardized weights Standardized 
weightsEstimate Std.Error P-Value

Road section level

Std_xVelo_FS←R1 1* 0.884

Std_xVelo_WS←R1 0.898 0.049 <0.001 0.871

FI_FS←R1 0.031 0.002 <0.001 0.893

Local traffic level

LTI←R2 1* 0.779

avg_dist_group←R2 44.428 3.680 <0.001 0.655

Vehicle level

iPSD←R3 1* 0.631

nTHW←R3 0.129 0.010 <0.001 0.670

nPICUD←R3 4.890 0.523 <0.001 0.919

Model fit indicators

χ2/df=4.361<5, GFI=0.957>0.900, RMSEA=0.097<0.100, SRMR=0.0510.050, CFI=0.967>0.900, NFI=0.958>0.900

* Note that to identify the measurement equations, factor loadings corresponding to Std_xVelo_FS, LTI, and iPSD were set to one in the model.

Table 6 – Convergent and discriminant validity of the model

Factor
Convergent validity Discriminant validity factor correlation estimates

AVE CR R1 R2 R3

R1 0.779 0.914 - 0.836* 0.412*

R2 0.518 0.681 0.836* - 0.736*

R3 0.564 0.790 0.412* 0.736* -

Square Root of AVE 0.883 0.720 0.751

* Statistically significant at the 0.001 level
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LightGBM model, the importance of a feature can 
be determined either by the frequency of the feature 
acting as split nodes with positive split gains, or by 
the total gains of splits that use the feature. 

In our case, the conflict and non-conflict samples 
were labelled as risk and non-risk events (labelled 
as 1 and 0), respectively, the prediction of which 
can be well solved by a binary LightGBM classifier. 
To keep consistent with the previous CFA analysis, 
the 8 multi-level indicators in establishing the driv-
ing risk CFA model (Table 4) were fed into the binary 
LightBGM classifier as input features (all scaled to 
0~1 by z-score normalisation) and the classifier out-
put the predefined risk labels. Thus, different from 
the CFA analysis above, both conflict and non-con-
flict samples were utilised here to establish the 
LightBGM classifier, and the ratio of the number 
of risk samples and non-risk samples was set to 1:4 
(i.e. non-risk samples are randomly under-sampled 
from the non-conflict samples obtained in Section 
3) as previous research findings show that a better 
model fit can be obtained when the ratio of the case 
group to the control group is 1:4 [24].

To explore the potential differential importance 
of multi-level indicators across different prediction 
time, feature importance at 0 seconds, 1 second, 2 
seconds and 3 seconds prediction horizons were cal-
culated respectively for comparison. For example, 
for the 3 seconds prediction horizon, input features 
were calculated using the data observed 3 seconds 
earlier than the observation moment t0 defined in 
Section 3. It should be noted, same as with the pre-
vious CFA analysis to reflect the flow propagation 
effect, that the baseline time for the calculation of 
road section level indicators are 1 second in advance 
of that for local traffic and vehicle level indicators. 
The parameters of LightBGM classifier were deter-
mined based on the K-fold cross validation, which 
can help avoid over-fitting of the model and yields 
more convincing results. Specifically, num_leaves 
and max_depth were set to 15 and 4, respectively, 
both L1 and L2 regularisation terms were set to 
1.0 and other parameters were set to default values 
[37]. The performance of the established classifier 
was evaluated by typical indicators including pre-
cision, recall, their harmonic mean value F1-score 
and Area Under Curve (AUC) [38]. The value of 
these indicators ranges from 0 to 1, and a higher 
value generally means a better classification capa-
bility of the classifier.

cant at the 0.001 level), indicating that significant 
positive correlation can be observed between the 
latent risks, while no redundant risk construct is ob-
served in the model (a latent factor correlation over 
0.85 can raise redundancy concerns [33]). Specifi-
cally, except for the R2 (local traffic level risk) col-
umn, the correlation estimates in the other two col-
umns are lower than their corresponding square root 
of AVE of construct R1 (road section level risk) and 
R3 (vehicle level risk), respectively, indicating that 
there exists a certain distinction between the latent 
risks although they have significant inter-correla-
tions. Moreover, the inter-correlations are relatively 
higher for R2 and the other two latent risks, meaning 
it is difficult to completely separate the local traffic 
level risk from road section level risk or vehicle lev-
el risk, which is in accordance with what one would 
expect, as road section level traffic flow and vehicle 
level driving manoeuvre are supposed to interact 
with each other through the operating status of the 
local level vehicle groups. 

Such modelling results above indicate that the 
theoretical concept of multi-level indicator based 
latent risk constructs is generally consistent with 
the observed results, which can enlighten on a more 
comprehensive framework of risk event prediction 
by including a set of multi-level indicators. 

4.2 Feature importance of the multi-level 
indicators 

To further examine the importance of the pro-
posed multi-level indicators in risk event prediction, 
the technique of LightBGM feature importance 
scoring was employed. LightGBM, a decision tree-
based learning algorithm under the gradient boost-
ing framework, can deal with both the regression 
and classification problem [37], and can output 
the importance of features in solving the problem, 
which fits with the objective of this paper. Unlike 
most decision tree learning algorithms with the lev-
el-wise tree growth strategy, LightGBM grows trees 
through the leaf-wise strategy (i.e. only the leaf with 
the highest split gain is identified and split) and can 
generally achieve better model accuracy. Key pa-
rameters in the setting of LightGBM involve de-
cision tree-based indicators, such as the number 
of leaf nodes (denoted as num_leaves, the main 
parameter that controls the complexity of the tree 
model) and the maximum depth of the tree (denot-
ed as max_depth, an important parameter that han-
dles the overfitting problem). Given the established 
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dominant position in classifying driving risk when 
the prediction horizon is short, while local and 
road level indicators (especially for local level 
indicator avg_dist_group and road level indicator 
Std_xVelo_FS) generally take a higher importance 
rate when the prediction time gets earlier, which 
time period is of primary concern for many early 
warning applications. It suggests that such typical 
local and road indicators, such as the average gap 
distance between the subject vehicle and its sur-
rounding vehicles, as well as the standard devia-
tion of travelling speed of the front vehicles in the 
road section should be taken into account in or-
der to obtain more timely prediction of the driving 
risk. As risk prediction is not the prime purpose of 
the paper, the manner of establishing a more accu-
rate risk prediction model by effectively fusing the 
multi-level indicators will not be further discussed.

5. CONCLUSIONS
A safety assessment framework of multi-level 

risks, i.e. road section level, local area level and ve-
hicle level risks, represented by indicators in differ-
ent measurement dimensions, was proposed based 
on vehicle trajectory data from HighD. The rela-
tionship among the multi-level risks and indicators 
was examined using the CFA technique in SEM, 
where the multi-level indicators were processed as 
the observed reflections of the interrelated latent 

Five-fold cross validation results of the es-
tablished LightBGM are shown in Figures 7 and 8. 
Figure 7 shows that AUC scores have a decreasing 
trend when the prediction time becomes earlier, 
which is as expected as more future uncertainties 
are involved with prolonged prediction horizon 
and prediction gets more complicated and diffi-
cult. For different prediction horizons, all AUC 
scores are above 0.9 level and F1 scores are close 
to 0.8 level, indicating that the established Light-
BGM classifier has reasonable results and can be 
used for the subsequent feature importance analy-
sis. The feature importance was then calculated as 
the total times the feature is utilised in the estab-
lished classifier. The ranking of feature importance 
in Figure 8 shows vehicle level indicators have a 
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基于车辆轨迹的驾驶安全多层级风险评估框架

摘要

现有研究很少探讨高速公路交通安全系统中路段

级别、局部区域级别和车辆级别风险之间的关系，

而这对于构建有效的风险事件预测方法具有重要意

义。本文在一组仔细挑选和设计的指标基础上，提

出了一个多层级风险评估框架。基于车辆轨迹数

据，采用结构方程模型（SEM）探索潜在的多层级

风险与其可观测指标之间的相互关系。结果表明，

潜在多层级风险变量之间具有显著的正相关关系，

且每个潜变量都具有较好的聚合效度，但局部区域

层级风险与路段层级风险或车辆层级风险之间的区

别难以完全界定。基于	 LightGBM 的特征重要性评

分结果显示，当风险预测时间提早时，局部区域层

级和和路段层级的指标将变得更为重要。本文提出

的基于多层级指标的潜在风险框架总体上符合观测

结果，并强调了在未来风险事件预测中包含多层级

指标的重要性。

关键词

交通安全;	多层级风险；安全指标； 
结构方程模型；车辆轨迹
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