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ABSTRACT 
Air traffic complexity is one of the main drivers of 

the air traffic controllers’ workload. With the forecasted 
increase of air traffic, the impact of complexity on the 
controllers' workload will be even more pronounced in 
the coming years. The existing models and methods for 
determining air traffic complexity have drawbacks and 
issues which are still an unsolved challenge. In this pa-
per, an overview is given of the most relevant literature 
on air traffic complexity and improvements that can be 
done in this field. The existing issues have been tackled 
and new solutions have been given on how to improve 
the determination of air traffic complexity. A preliminary 
communication is given on the future development of a 
novel method for determining air traffic complexity with 
the aim of designing a new air traffic complexity model 
based on air traffic controller tasks. The novel method 
uses new solutions, such as air traffic controller tasks de-
fined on pre-conflict resolution parameters, experiment 
design, static images of traffic situations and generic 
airspace to improve the existing air traffic complexity 
models. 

KEY WORDS
air traffic complexity; air traffic controller; assessment;  
workload; tasks;

1. INTRODUCTION
The growth in traffic demand is a driver of air 

traffic development but it could also lead to neg-
ative consequences such as airspace congestion, 
flight delays, high traffic density, flight inefficiency 

due to excessively long routes, increased fuel con-
sumption, and therefore, increased flight costs and 
environmental impact. These problems will become 
even more pronounced in the coming years, due to 
the increased traffic demand. 

The trend of air traffic growth in the EURO-
CONTROL zone from 2013 continued until 2018, 
after a few years of stagnation caused by the glob-
al economic crisis. The number of flights based on 
instrument flight rules (IFR) grew by 3.8% on av-
erage compared to the traffic in 2017. The air traf-
fic growth is larger in terms of passenger numbers 
than in terms of flights (6.1% compared to 2017), 
which was also the case in the preceding years [1]. 
This growth continued in the first half of 2019, with 
the number of controlled flights in the EUROCON-
TROL zone increasing by 1.6% on average, com-
pared to 2018 [2]. According to the EUROCON-
TROL medium-term forecast, it is estimated that the 
growth of IFR traffic will continue in the follow-
ing years to the year 2025 with the average annual 
growth of 2.0% [3].

In such conditions, more complex air traffic sit-
uations occur which may impede the provision of 
air traffic control service, in particular, specific air 
traffic controller tasks. This can result in increased 
air traffic controller workload that poses a poten-
tial safety hazard. To meet the traffic demand, air 
navigation service providers must ensure adequate 
sector capacity that will allow safe and efficient air 
traffic. Since the sector capacity depends on the air 
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2. AIR TRAFFIC COMPLEXITY AND 
AIR TRAFFIC CONTROLLER 
WORKLOAD 
Air traffic complexity has been a common re-

search topic since the early days of modern air traf-
fic control (ATC) operations. At the beginning, most 
of the research dealt with the air traffic controller 
(ATCO) workload instead of air traffic complexi-
ty to express how difficult some ATCO tasks were. 
Because of that, it is important to explain the rela-
tion between these two indicators. The first papers 
that dealt with the complexity were written in the 
early 1960s [5]. Since then, numerous papers and 
reports have been written on the topic of complexi-
ty – excellent reviews of those papers were written 
by Mogford [6] and Hilburn [7]. Their conclusion 
was that the air traffic complexity is a fundamental 
driver of workload but that the connection between 
complexity and workload is not straightforward; 
it is mediated by other factors, such as equipment 
quality, individual differences, and controller cog-
nitive strategies (Figure 1) [6]. It can be noticed that 
most of the early research has been conducted in 
order to better define the factors that affect air traf-
fic controller workload. From today’s point of view 
and with present understanding and definitions, the 
majority of these factors would probably be classi-
fied as complexity factors. 

Schmidt [8] approached the problem of model-
ling controller workload from the angle of observ-
able controller actions. He created the control diffi-
culty index, which can be calculated as a weighted 
sum of the expected frequency of occurrence of 
events that affects the controller workload. Each 
event is given different weight according to the time 

traffic controller workload, air traffic complexity 
becomes one of the crucial factors that is consid-
ered when investigating these indicators and the air 
traffic management system. Air traffic complexity is 
defined as the difficulty of monitoring and manag-
ing a specific air traffic situation [4].

The Single European Sky (SES), which is the 
project of modernizing and improving the European 
air traffic management, aims to increase the traffic 
safety, capacity and efficiency as well as to reduce 
the negative consequences of increased air traffic 
demand. Several new technologies (solutions) have 
been developed through SES air traffic management 
research (SESAR) program to meet the high traffic 
demand and to ensure traffic safety. Air traffic com-
plexity is investigated and researched within the 
SESAR which resulted in the SESAR Solution#19 
Automated Support for Complexity Detection and 
Resolution (from SESAR 1). One of the sub-func-
tionalities to be developed within SESAR2020 is 
Automated Support for Traffic Complexity Assess-
ment which is prescribed in the Commission Imple-
menting Regulation (EU) No. 716/2014 of 27 June 
2014 on the establishment of the Pilot Common 
Project supporting the implementation of the Euro-
pean Air Traffic Management Master Plan. 

This paper gives the research overview of mod-
els and methods for determining and assessing air 
traffic complexity. Based on previous research find-
ings, we identified the shortcomings on the existing 
models, presented a novel method for determining 
air traffic complexity and proposed a new model 
that should surpass the flaws that are still present in 
this field of research.

Air traffic pattern

ATC complexity

Sector characteristic

Source factors

Mediating factors

Equipment quality

Individual differences

Controller cognitive
strategies

Controller workload

Figure 1 – Relationship between ATC complexity and workload [6]
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based on the actual traffic. Their results showed 
that the dynamic density was able to account for 
55% of controller activity variation. Three other 
teams [12–14] working under the Dynamic Densi-
ty programme developed additional 35 complexity 
indicators (factors), which were later successfully 
validated as a group by Kopardekar et al. [15]. Un-
fortunately, it was later shown that the complexity 
indicator weights were not universal to all airspace 
sectors, i.e. they had to be adjusted on a sector by 
the sector basis [16]. While making Dynamic Den-
sity technique difficult to implement for operation-
al purposes, this shortcoming has no influence if 
one wishes to compare two concepts of operations 
under similar conditions (similar sector configu-
ration). Furthermore, the same authors [15] sug-
gested that, due to possibly non-linear interactions 
between complexity factors, the Dynamic Density 
performance could be improved by using non-linear 
techniques such as non-linear regression, genetic al-
gorithms, and neural networks.

Almost the same group of authors will use mul-
tiple linear regression method five years later to 
determine which subset of complexity indicators 
would correlate well with the controller’s subjec-
tive complexity ratings [17]. After extensive simu-
lator validation, the results of this study showed that 
there were 17 complexity indicators that were sta-
tistically significant. The top five complexity indi-
cators were: sector count, sector volume, number of 
aircraft under 8 NM from each other, convergence 
angle, and standard deviation of ground speed/mean 
ground speed. Similar work was done by Masalonis 
et al. [18] who selected a subset of 12 indicators, 
and Klein et al. [19] who selected a subset of only 
seven complexity indicators, though with less ex-
tensive experimental validation.

In a similar vein, Bloem et al. [20] tried to de-
termine which of the complexity indicators had the 
greatest predictive power in terms of future com-
plexity. The authors concluded that there was a sig-
nificant difference in the predictive power of differ-
ent complexity indicators. To complicate the matter 
further, they concluded that the subset of the com-
plexity indicators that had the best predictive power 
changed depending on the prediction horizon.

To calculate the potential impact of air traffic 
complexity on the workload and costs, in 2000 EU-
ROCONTROL gave the same set of traffic data to 
the UK National Air Traffic Services (NATS) and 
EUROCONTROL Experimental Centre (EEC) with 

needed to execute a particular task. Although the 
author conducted extensive surveys to determine 
the appropriate weights and frequencies for various 
events, this approach can only handle observable 
controller actions, which makes this approach very 
limiting.

Even though Hurst and Rose [9] were not the 
first to realize the importance of traffic density, they 
were the first to measure the correlation of expert 
workload ratings and the traffic density. They con-
cluded that only 53% of the variance in the reported 
workload ratings can be explained by density.

Stein [10] used the Air Traffic Workload Input 
Technique (ATWIT), in which the controllers report 
the workload levels during simulation, to determine 
which of the workload factors influenced the work-
load the most. The regression analysis proved that 
out of the five starting factors, four factors (local-
ized traffic density, number of handoffs outbound, 
total amount of traffic, number of handoffs inbound) 
could explain 67% of the variance in ATWIT scores. 
This study showed the importance of localized traf-
fic density which is a measure of traffic clustering. A 
technique similar to ATWIT is to be used through-
out the next three decades.

3. OVERVIEW OF AIR TRAFFIC 
COMPLEXITY MODELS AND 
METHODS
Today, air navigation service providers still use 

air traffic controllers' subjective assessment as the 
most important method for determining the air traf-
fic complexity, even though there are many studies 
that have dealt with the development of new, more 
objective methods for determination of air traffic 
complexity. The most important scientific papers 
dealing with the methods and models for determin-
ing air traffic complexity are based on the subjective 
assessment by the air traffic controllers.

Laudeman et al. [11] expanded on the notion of 
the traffic density by introducing Dynamic Density 
which they defined as a combination of ‘both traffic 
density (count of aircraft in a volume of airspace) 
and traffic complexity (a measure of the complexity 
of air traffic in a volume of airspace)’. The authors 
used informal interviews with controllers to obtain 
a list of eight complexity factors to be used in the 
dynamic density equation. The only criterion was 
that the factors could be calculated from the radar 
tracks or their extrapolations. The intention was to 
obtain an objective measure of controller workload 
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user-friendly and self-explanatory (unlike many 
other complexity metrics). However, this study in-
cluded only six complexity indicators with weights 
that were determined in an ad-hoc manner and 
hardly any validation with actual subjective com-
plexity. Only one of those complexity indicators 
was indirectly related to TBO (number of aircraft 
with data-link). Many Human-In-the-Loop (HITL) 
simulation runs were performed in which the con-
trollers had to give workload scores which were 
then compared with TBX value and simple aircraft 
count. While the authors claim that the subjective 
workload score correlated better with the TBX val-
ue, there was no objective correlation assessment 
presented. Finally, the authors did not compare the 
effect of the fraction of TBO aircraft on air traffic 
complexity.

In a subsequent paper by the same authors, the 
relationship between workload and data-link equi-
page levels was explored [24]. It was concluded that 
the workload ratings correlated much better with the 
TBX score than with the aircraft count for varying 
data-link equipage levels. 

Another study of the complexity of TBO was 
made by Radišić et al. [25]. The authors investigat-
ed how transitioning from conventional to trajecto-
ry-based operations affects the air traffic complexity 
for the area radar air traffic control. They developed 
a series of scenarios and simulated the conditions 
of different traffic loads. They used licensed air 
traffic controllers to implement HITL simulations. 
During the simulation, the controllers assessed the 
complexity of the traffic situation on a scale from 1 
to 7 (modified ATWIT grading scale). The authors 
proved that the subjective air traffic complexity has 
significantly decreased in trajectory-based opera-
tions. It has been experimentally demonstrated that 
the decrease in air traffic complexity was significant 
only in traffic situations with a larger number of 
aircraft and with a larger share of aircraft flying in 
accordance with TBO.

Prandini et al. developed a new method of map-
ping complexity based exclusively on traffic density 
[26]. This method is applicable only to the future 
concept of aircraft self-separation and does not take 
into account the human factors at all.

Gianazza [27–29] proposed a method for the 
prediction of air traffic complexity using tree search 
methods and neural networks. This method is based 
on the assumption that the air traffic complexity in 
historical flight data increased prior to the splitting 

the task of independently devising a method of 
measuring the level of service [21]. While NATS 
estimated the ATS output (the service provided), the 
EEC estimated the ATS workload needed to deliver 
the service. Both ‘were found to produce reasonably 
consistent results’, with additional note that further 
analysis should be done before the final parameters 
for determining ATS provider costs are established. 
By 2006 EUROCONTROL Performance Review 
Commission finalized the complexity indicators 
to be used for ANSP benchmarking [22]. For this 
method the European airspace is divided into 20 
NM X 20 NM X 3000 ft cells, and for each cell the 
duration of potential interactions is calculated. The 
aircraft ‘interact’ if they are in the same cell at the 
same one-hour timeframe window. The ratio of the 
hours of interactions and flight hours is so called 
‘Adjusted Density’. In addition, the ‘Structural 
Index’ is calculated as a sum of potential vertical, 
horizontal, and speed interactions. The final com-
plexity score is calculated as a product of adjusted 
density and structural index. All in all, only four 
complexity indicators were used for this analysis 
and no validation of any sort was presented in the 
report. It was noted, however, that shifting the start-
ing position of the grid by 7 NM caused the ANSP 
ranking to change dramatically (up to 16 places in 
an extreme case). Nonetheless, this method is still 
used for ANSP benchmarking.

The first to consider measuring complexity during 
trajectory-based operations (TBO) were Prevot and 
Lee in 2011 [23]. They coined the term Trajecto-
ry-based Complexity (TBX) which is a measure of 
complexity in TBO. The basis of the TBX calcula-
tion is a set of nominal conditions – nominal sector 
size, nominal number of transitioning aircraft, and 
a nominal equipage mix. Any difference to nominal 
operations causes a modification to the TBX value. 
The authors do not explain the method to determine 
the nominal conditions except that they can ‘be de-
fined through knowledge elicitation sessions on a 
sector-by-sector basis or based upon more generic 
attributes’. The TBX value is then a number of air-
craft that would produce the same workload under 
the nominal conditions as do aircraft under real con-
ditions (e.g. the TBX of 20 means that the workload 
is equal to the aircraft count of 20 under nominal 
conditions even though there are actually only 16 
aircraft in the sector). The advantage of this method 
is that it gives a single complexity value that can 
be easily related to aircraft count and is thus very  
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Xiao et al. [34] developed ATCEM – an air traffic 
complexity evaluation model that consists of three 
elements: selected complexity factors as input data, 
air traffic complexity level as output data and classi-
fier for mapping relationship between the complex-
ity factors and the complexity level. In this model, 
seven critical complexity factors are selected from 
the complexity factor pool by a genetic algorithm. 
The model was trained according to the aviation 
domain knowledge and using the backpropagation 
neural network (BPNN) and a large sample data. Al-
though ATCEM was positively empirically evaluat-
ed, the authors suggest further research and model 
improvement by building more effective integration 
method that would increase the classification per-
formance of air traffic complexity. 

Similar work was done by Xi ZHU et al. [35]. 
The authors proposed a new model to measure air 
traffic complexity based on small samples. The au-
thors generated multiple small-size complexity fac-
tor subsets from the complexity factor pool and used 
an improved machine-learning model – random 
subspace to train the model. The basic complexity 
evaluator was built according to each factor subset. 
The final complexity measure was obtained by in-
tegrating all the results from the basic complexity 
evaluators. Although the model’s performance was 
experimentally evaluated and showed advantages 
comparing to other small-sample complexity mod-
els, the authors proposed a model improvement by 
optimizing some parameters and using the semi-su-
pervised machine-learning techniques.

Andraši et al. [36] proved that artificial neu-
ral networks (ANNs) can be used to determine air 
traffic complexity with the accuracy similar to the 
linear models. They conducted the human-in-the-
loop experiments with licenced air traffic control-
lers and concluded that the remaining variance in 
subjective complexity scores cannot be explained 
by traffic characteristics. Also, they stated that one 
of the problems for the errors were inconsistent AT-
COs grading of traffic situations. ATCOs could not 
score (rate) traffic situations with perfect consisten-
cy among themselves or between different traffic 
situations.

4. ISSUES AND NEW SOLUTIONS 
The problem of determining an adequate com-

plexity score is still an issue in air traffic control, 
because it is considered subjectively, from the 
air traffic controllers’ perspective. The air traffic  

of the collapsed sector into two smaller ones and 
decreased prior to collapsing the sectors into a larg-
er one. The neural network was trained using these 
historical data and then it could predict the future 
increase in air traffic complexity. Tree search meth-
od was then used to determine the airspace config-
uration which yields the lowest workload and com-
plexity for the given air traffic pattern.

Lee et al. [30] proposed that airspace complexity 
can be described in terms of how the airspace (to-
gether with the traffic inside it and the traffic control 
method) responds to disturbances. The effect of dis-
turbances on control activity needed to accommo-
date that disturbance is what defines the complexity 
in their opinion. The more control activity needed, 
the more complex is the airspace. They proposed a 
tool, airspace complexity map, which should help to 
plan the airspace configuration and the future devel-
opment of ATM.

Wee et al. [31] developed a dynamic tactical 
complexity model, known as Conflict Activity Lev-
el (CAL) that evaluates the likely aircraft flight 
shape profile based on its current and projected po-
sition and trajectory. From the flight shape profile, 
CAL values are computed and the overall complexi-
ty score is given. The authors state that the proposed 
complexity approach shows good agreement with 
other methods in terms of ranking the order of com-
plexity of various air traffic scenarios.

Dervic and Rank [32] used the comparison 
method while interviewing the ATCOs to devel-
op a formula that is capable of calculating traffic 
complexity in the terminal area. The first group of 
answers, taken from questioning the ATCOs, stud-
ied the complexity of the scenarios individually 
and ranked the scenarios in reference to each other. 
Those answers were used to make the formula by 
linear regression models and the second group of 
ATCOs was used to validate the same formula. De-
spite the small amount of data samples, the authors 
were able to prove a genuine relation between the 
variables and the traffic complexity.

Wang et al. [33] constructed a dynamic weight-
ed network by considering aircraft, waypoints, and 
airways as nodes, and the complexity relationships 
among those nodes as edges. The complexity is de-
fined as the sum of the weights of all edges in the 
network and the results indicate that the new com-
plexity index is more accurate than the traffic count. 
Thus, the complexity-based management is more 
efficient than the traffic count-based management.
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air traffic controller’s subjective assessment for 
the already known traffic situations and airspaces. 
However, the problem of inconsistent assessment 
of traffic situations, where the same ATCO assesses 
the traffic situation that has a different complexity 
level with the same complexity score, still persists. 
To solve this, we will approach the problem by giv-
ing the air traffic controllers two traffic situations 
at the same time. In our experiments, ATCOs will 
only evaluate the complexity by comparing the two 
presented traffic situations. Upon selecting which 
one of the two presented traffic situations is more 
complex, they will receive a set of two new traf-
fic situations for complexity assessment. In many 
previous studies the authors used HITL simulations 
to assess the air traffic complexity. By using this 
method, it was difficult for ATCOs to distinguish 
and assess air traffic complexity from the workload 
[6]. To eliminate this, the traffic situations will be 
presented and given to ATCOs by paper static im-
ages. The images will be similar to a radar image 
of the real ATCO working position. All air traffic 
situations will be designed to contain a specific 
number of aircraft in different positions that would 
influence the activation of the appropriate combi-
nation of air traffic controller tasks. There will be 
120 unique traffic situations developed and divided 
into six groups (Figure 2). Each group will consist of 
30 traffic situations from which 18 will be unique 
to that group and 12 traffic situations will be the 
same and repeated in all six groups. The repeated 
traffic situations are created intentionally in order 
to better evaluate the ATCO assessment. There will 
be three air traffic controllers per group, so in total 
18 ATCOs will be tested. This design approach is 
developed to cover the necessary machine-learning 
sample size. Prior to the experiments we are aware 
of the following effects; firstly, the number of air 
traffic controllers and their labelling capabilities are 
limited; secondly, we are using statistical regulari-
ties for the minimum number of samples as a func-
tion of independent variables in regression studies 
[37, 38]. As stated by Green in 1991, the required 
regression sample size should be N>50+8 m, where 
m is the number of independent variables. Further-
more, the authors [38] stated that the statistical 
power is directly derived from the sample size and 
effect size. A larger sample size results in increased 
statistical power, but then again without good effect 
size, it does not matter how big the sample size is 
or which rule of thumb formula is to be taken to 

controllers observe and analyse the traffic data and 
decide whether a traffic situation is complex or not. 
All other methods are just attempts to approximate 
the level of complexity according to air traffic con-
trollers' subjective assessment.

Whether it is a purely mathematical model that 
does not take into account the controllers’ assess-
ment of complexity [22] or a fully human in-the-
loop testing with linear regression and artificial net-
works [25, 36], the problem of adequate complexity 
determination is still present. As traffic increases 
every year, the complexity determination will be-
come even more important since it influences the 
controller’s workload and airspace capacity.

Having this in mind, we propose a novel method 
when determining air traffic complexity. It can be 
seen that all existing methods and models for deter-
mining air traffic complexity fall short in one of the 
categories. Whether it is the lack of data gathered 
for the machine-learning [35] or artificial networks 
[34], or it is simply that some models are tied to the 
specific airspace or to the exact personnel on whom 
they were tested, all this makes the model unusable 
for adequate complexity determination when trying 
to use it on different airspace and other ATCO per-
sonnel [16, 25]. Finally, there is a problem of in-
consistent complexity assessment by the controllers 
when the same controller assesses different levels 
of traffic complexity with the same score of com-
plexity [36]. 

To mitigate all the problems mentioned above, 
a development of a new methodology is proposed 
as well as a novel complexity model that is based 
on air traffic controller tasks. The air traffic con-
troller tasks are defined on the basis of character-
istics of the air traffic situation and do not depend 
on the person controlling the air traffic. Because of 
this, we believe that by defining a set of air traffic 
controller tasks (Figure 2) based on the pre-conflict 
resolution parameters, the model could calculate an 
adequate complexity score. Pre-conflict resolution 
parameters would consist purely of the aircraft geo-
metrical parameters, such as the distance between 
the aircraft, distance to conflict point, converging 
angle, aircraft speed, aircraft movement freedom 
in the airspace, etc. The tasks so defined would 
be applicable to other airspaces and would not be 
tied to the specific air traffic controller. Addition-
ally, to ensure the possibility that the model can be 
used in different airspaces, the traffic situations will 
be defined in a generic airspace (Figure 2) to avoid 
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Table 1 – Existing issues and new solutions for improved determination of air traffic complexity

Existing issues New solutions
Schmidt [8] approached the problem of modelling controller 
workload from the angle of observable controller actions. 
Although the author conducted extensive surveys to deter-
mine appropriate weights and frequencies for various events, 
this approach can only handle observable controller actions, 
which makes this approach very limiting.

Authors in [12–14] developed 35 complexity indicators from 
which only 17 are statistically significant, but later, they 
concluded that these indicators are difficult to implement for 
operational purposes.

Dervic and Rank [32] only used simple straightforward tasks 
for terminal area to develop complexity model. The problem 
with this approach is that they cannot be used on other traffic 
and airspace other than the terminal area.

The air traffic controller tasks are defined on the basis of the 
characteristics of the air traffic situation and do not depend 
on the person controlling the air traffic. Because of this, by 
detailed definition of air traffic controller tasks based on the 
pre-conflict resolution parameters, new model could calculate 
adequate complexity score. Additionally, detailed definition of 
the tasks will cover the parameters of the traffic in order that 
they would be applicable to other airspace and would not be 
tied to the specific air traffic controller. 

Precise definition of ATCO tasks based on the pre-conflict 
resolution parameters cover traffic situations in more detail 
than a fixed number of indicators and could easily be imple-
mented for operational purposes. 

Kopardekar et al [16] have shown that the complexity indica-
tor weights were not universal to all airspace sectors, i.e. they 
had to be adjusted in a sector by sector basis.

Radišić [25] concluded that ATCIT complexity assessment 
model needs to be adjusted and relearned for a new airspace.

It is common for a person to link the learned experiences 
with the new ones. The same goes with air traffic controllers, 
where previously learned airspace knowledge and gained 
experience could cause an error in complexity assessment and 
scoring.

To mitigate this problem and to be able to use the model in 
different airspace ATCOs will be tested on the unfamiliar 
generic airspace. With this, we will avoid the error caused by 
already learned traffic situations and patterns of complexity.

Mogford [6] concluded that the air traffic complexity is 
a fundamental driver of workload but that the connection 
between complexity and workload is not straightforward; 
it is mediated by other factors, such as equipment quality, 
individual differences, and controller cognitive strategies. So, 
by putting the ATCOs to assess the complexity on a real time 
simulator, it can be difficult for them to distinguish the air 
traffic complexity from the workload that they are experienc-
ing through other mediated factors such as human-machine 
interaction (HMI).

Kopardekar [17] used HITL simulations with air traffic con-
trollers to assess the air traffic complexity.

Prevot and Lee [23] used HITL simulation runs in which the 
air traffic controllers had to give workload scores which were 
then compared with trajectory-based complexity value.

Radišić [25] also used the HITL simulation runs where air 
traffic controllers assessed the complexity on a scale from 1 
to 7.

To solve this problem ATCOs will assess the air traffic com-
plexity of traffic situation by using paper static images. Im-
ages will be similar to radar image of the real ATCO working 
position. They will be given as much time as needed to assess 
air traffic complexity. 

Andraši [36] reported inconsistency when air traffic control-
lers assess air traffic complexity. The problem with incon-
sistency appears when the same controller grades the traffic 
situation that has a different complexity level with the same 
complexity scores. This could lead to an error when develop-
ing air traffic complexity model.

To solve this problem, ATCOs will be given two different 
traffic situations at the same time. During the experiment, the 
ATCOs will compare two traffic situations and evaluate which 
one is more complex, thus eliminating any inconsistences 
where ATCOs would grade different traffic situations with the 
same complexity score.

At the end, there would be a clear ranking of traffic situations 
from the lowest to the highest traffic complexity per tested 
ATCO.

Gianazza [27–29] used 27 indicators to see how splitting and 
merging of the airspace sectors affect the complexity without 
consulting the air traffic controllers. The issue here is that 
authors used the historical data from opening, merging and 
closing of the sectors without looking into the reason behind 
the splitting of the sectors. 

During the complexity assessment by the air traffic control-
lers, other information will be collected as well, for example, 
the situation when ATCOs would want to split the sector 
based on the traffic complexity. Thus, the model will be 
allowed to adequately determine when the airspace should be 
divided or reorganized into another configuration based on the 
ATCO input of traffic complexity.
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situations. At the end, a real airspace will be used 
to verify the model. Air traffic controllers will as-
sess air traffic complexity of the traffic situation 
within this real airspace, thus allowing us to make a 
correlation of the assessed complexity and the one 
determined by the new model. Figure 2 shows the 
complete overview of the methodology and plan of 
the research. 

General overview of the existing issues in deter-
mining the air traffic complexity and how the novel 
model tackles these problems is depicted in Table 1.

5. CONCLUSION
The problem of determining air traffic complexi-

ty, even after almost two decades of research on the 
global scale, has remained an unsolved challenge. 
Due to the increase of air traffic demand, this prob-
lem will be even more pronounced in the coming 
years. In this paper we give an overview of the most 
relevant literature of air traffic complexity research 
and present the main issues of the recent models and 
methods for determining air traffic complexity. For 
each issue we give a new solution that could sig-
nificantly improve this field of research. Finally, we 
propose a preliminary communication on a novel 
methodology for future development of an air traffic 
complexity model based on the air traffic control-
ler tasks. We assume that air traffic controller tasks 
based on the pre-conflict resolution parameters are 
the solution that will lead to the improvement of 
the air traffic complexity determination. Addition-
ally, several other solutions, such as experiment de-
sign, static images of traffic situations and generic 
airspace, are important drivers of the future devel-
opment of a new air traffic complexity model. We 
presume that this novel methodology could surpass 
all the shortcomings of the previous models. 
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calculate a sample size. There is no universal rule of 
thumb for the minimum sample size that can cover 
each individual situation and statistical model, but it 
is recommended to follow the statistical regularities 
mentioned earlier, as we are doing in this research. 
The defined number of air traffic controllers and the 
defined number of traffic situations are chosen to 
provide enough data to train the model for the pur-
pose of this research. Afterwards, if the data would 
not provide enough statistical power, a larger data 
sample will be used. In that case, we will expand 
the number of traffic situations and the number of 
air traffic controllers.

Prior to the assessment, we will brief the ATCOs 
on the definitions of complexity, workload and air-
space capacity to ensure that all of them have the 
same level of understanding of the air traffic com-
plexity and that they understand what is expected 
of them during the assessment. During the ATCOs 
assessment, the ranking of the traffic situations will 
be done by merge sort algorithm [39]. Merge sort 
repeatedly splits a list of data into several sub-lists 
until each sub-list consists of a single component. 
Afterward, it merges those sub-lists in a way that 
results in a sorted list. Here, the input from the air 
traffic controller will be taken as a sort list rule. By 
ranking them in this manner, it will be impossible 
that two traffic situations have the same complexity 
score. Using this approach, we will eliminate the in-
consistent assessment by the air traffic controllers, 
so that at the end of the validations, there will be a 
clear rank from the lowest to the highest complexi-
ty. Furthermore, to establish a clear grading system, 
the controllers will be asked to assess the traffic sit-
uations and give a complexity score, from 1 to 5, 
where 1 will be the lowest and 5 will be the highest 
complexity score (Figure 2). Based on the controllers 
complexity ranking and scoring, we will assign lin-
early interpolated grades to each situation for each 
controller. Later on, all complexity scores will be 
used as target variables to train the model on how 
specific air traffic controller tasks (exploratory vari-
ables) contribute to air traffic complexity. We plan to 
use several statistical machine-learning approaches. 
One of the first approaches that will be used is lin-
ear regression and logistic regression models. Later 
on, depending on the R2 results we might test some 
non-linear models and compare them with the lin-
ear models. Cross-validation will be done for all the 
designed models in order to estimate out-of-sample 
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ODREĐIVANJE KOMPLEKSNOSTI 
ZRAČNOG PROMETA – IZAZOVI I BUDUĆI 
RAZVOJ

SAŽETAK
Kompleksnost zračnog prometa je jedan od glavnih 

faktora radnog opterećenja kontrolora zračnog prometa. 
Uz predviđen rast zračnog prometa, utjecaj kompleksno-
sti na radno opterećenje kontrolora zračnog prometa s 
vremenom će biti još izraženiji. Postojeći modeli i metode 
za određivanje kompleksnosti zračnog prometa pokazuju 
nedostatke i probleme koji i do danas predstavljaju ner-
iješen izazov. U ovom radu dajemo pregled najrelevant-
nije literature na temu kompleksnosti zračnog prometa 
i poboljšanja koja se mogu postići u ovom području. 
Istražujemo postojeće probleme i dajemo nova rješenja 
za poboljšanje određivanja kompleksnosti zračnog pro-
meta. Dajemo preliminarni pregled budućeg razvoja 
nove metode za određivanje kompleksnosti zračnog pro-
meta s ciljem dizajniranja novog modela kompleksnosti 
zračnog prometa koji je temeljen na zadaćama kontrolo-
ra zračnog prometa. Nova metoda koristi nova rješenja 
za poboljšanje postojećih modela kompleksnosti zračnog 
prometa, poput zadaća kontrolora zračnog prometa 
definiranih na parametrima prije rješavanja konflikta, 
dizajna eksperimenta, statičnih slika prometnih situacija 
i generičkog zračnog prostora.

KLJUČNE RIJEČI
kompleksnost zračnog prometa; kontrolor zračnog 
prometa; procjena; radno opterećenje; zadaće;
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