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ABSTRACT
This paper proposes a region-based travel time and 

traffic speed prediction method using sequence predic-
tion. Floating Car Data collected from 8,317 vehicles 
during 34 days are used for evaluation purposes. Twelve 
districts are chosen and the spatio-temporal non-linear 
relations are learned with Recurrent Neural Networks. 
Time estimation of the total trip is solved by travel time 
estimation of the divided sub-trips, which are constituted 
between two consecutive GNSS measurement data. The 
travel time and final speed of sub-trips are learned with 
Long Short-term Memory cells using sequence predic-
tion. A sequence is defined by including the day of the 
week meta-information, dynamic information about ve-
hicle route start and end positions, and average travel 
speed of the road segment that has been traversed by 
the vehicle. The final travel time is estimated for this se-
quence. The sequence-based prediction shows promising 
results, outperforms function mapping and non-paramet-
ric linear velocity change based methods in terms of root-
mean-square error and mean absolute error metrics. 

KEY WORDS
travel time estimation; recurrent neural networks;  
sequence prediction; intelligent transportation systems;

1. INTRODUCTION
Short-to-medium-term travel time and traffic 

speed prediction has been one of the crucial compo-
nents of Intelligent Transportation System (ITS) ap-
plications. Travel time and traffic speed prediction 
methods are separated based on the underlying data 
acquisition mechanisms and prediction approaches 
categorized either parametrically or non-parametri-
cally. Data acquisition is largely performed by sta-
tionary sensors such as remote traffic microwave 
sensors [1] or loop detectors [2, 3]. As an alternative 
solution to remote sensors, travel time is predicted 
using mobile phone GNSS data or Floating Car Data 

(FCD) [4-6]. Parametric approaches include predic-
tion using regression trees [7], time-series analysis 
[8] while non-parametric approaches adopt pattern 
searching and artificial intelligence, like estimating 
network speed by processing traffic images taken 
from a traffic camera with Convolutional Neural 
Networks (CNNs) [9]. 

The proposal includes travel time and traffic 
speed estimation method based on sequence pre-
diction that is extracted from a collection of large 
spatio-temporal GNSS data. Districts are smaller 
regions selected from the overall data collection 
region subject to their local speed distribution and 
noise variance. Non-linear traffic dynamics related 
to the district and meta information are captured 
using Recurrent Neural Networks (RNNs) that are 
formed of Long Short-term Memory (LSTM) cells. 
For evaluation and test purposes, data were collect-
ed in a metropolitan city of Istanbul, Turkey, over a 
period of 34 days, from a fleet of 8,317 passenger 
cars.  

District specific travel time and traffic speed 
estimation are learned by breaking down the en-
tire trip of vehicles into smaller sub-trips. A sub-
trip is defined as the trip between two consecutive 
GNSS measurement-based records with at most an 
elapsed time of 15 seconds. In Figure 1, for cluster 
centres with possible links, a link starting and end-
ing speed is established by relying on the available 
data. Afterwards, for each sub-trip belonging to 
the links, elapsed travel time ∆t is predicted with  
RNN∆t according to the meta-information of the day 
of the week, which is fine-tuned using district coor-
dinates and link start and end velocities. Using ∆t, 
velocity vt+1 is predicted by RNNvt+1 at the next time 
instance as well.
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in [18] and concluded that sampling protocol re-
garding time or space affects the accuracy of esti-
mation.

3. FLOATING CAR DATA COLLECTION
For the time period between January and Febru-

ary 2018, data from 8,317 vehicle on-board track-
ing systems were collected in Istanbul, Turkey. 
These tracking systems involve a GNSS receiver, 
an odometer measuring the vehicle wheel angular 
velocity and a cellular wireless communication mo-
dem to transmit measurement data to the back-end 
server. From each vehicle alongside the spatio-tem-
poral information of latitude-longitude coordinates 
and time provided by a GNSS receiver, and vehicle 
velocity information measured at a higher frequen-
cy by an odometer on the vehicle was transmitted to 
the back-end server. For travel time and speed esti-
mation purposes, twelve districts have been select-
ed, subject to different characteristics constituted 
by either high and low-speed roads, curvatures, and 
different levels in GNSS accuracy due to the non-
line-of-sight effects of urban canyons. Figure 2 shows 
data collected in these selected districts, where the 
first district D1 is shown in the top-left, the second 
district D2 is shown in the top-centre and the last dis-
trict D12 is plotted in the bottom right. The reported 
FCD coordinates are plotted with different colours 
denoting various vehicle speed ranges in order to 
give an insight into the types of roads, areas that 
get congested throughout the time of the day and to 
illustrate the characteristics of each individual dis-
trict. Each district has different characteristics, with 
varying legal speed limit roads, road curvatures and 
GNSS noise relating to urban canyons. The data are 
coloured according to the vehicle velocity between 
0-20 km/h, 20-50 km/h, 50-90 km/h and the veloc-
ity higher than 90 km/h coloured in blue, green, or-
ange, and red, respectively.

Table 1 gives north-west and south-east coordi-
nates of the district bounds in the forms of latitude 
and longitude, denoted by PNW and PSE, respectively. 

Then, sub-trips are processed by district specif-
ic RNNs and predicted travel time estimations are 
stitched together to re-create the actual trip. The link 
travel speed is constituted by dynamic link speed 
of the roads traversed by vehicles. The starting 
and ending average link speed is calculated for the  
interval of 5 minutes by using the map-matched ve-
hicle sub-trip speed data, respectively. Furthermore, 
this method provides continuous arterial speed in-
formation due to the analysis of sub-trips.

2. RELATED WORK
Short-term freeway travel time prediction based 

on a dynamic linear model using Bayesian inference 
was studied in [10]. The data were acquired from 
a loop detector and on a sequential basis, the state 
of a priori knowledge has been revised by newly 
available information. In [11], time lags related to 
elapsed time in segments were conducted using 
seasonal auto-regressive integrated moving aver-
age and Kalman filter. The gradient boosting meth-
od with time-lags related to previous elapsed times 
was presented in [7], the data were provided both by 
GNSS receivers mounted on vehicles and station-
ary sensors. An online freeway corridor travel time 
prediction was studied using Takagi-Sugeno-Kang 
Fuzzy Neural Network in [12]. Non-parametric esti-
mation using Euclidean distances of FCD was stud-
ied in [13]. Travel time estimation based on GNSS 
measurement data has been performed in [14] using 
a suffix-tree-based method. In [15], the uncertain-
ties in travel time predictions were regulated by the 
proposal of probabilistic prediction intervals, which 
are constructed using Bayesian techniques with cov-
erage above the nominal confidence level of 90%. 

Traffic speed estimation performed using the fu-
sion of loop-detectors and probe vehicles was eval-
uated with GNSS data in [16]. The use of station-
ary sensors such as loop detectors and interpolating 
speed between measurements has been evaluated 
as inaccurate in congested and transition conditions 
[17]. Probe vehicle data sampling was investigated 

Meta-information: weekday.
hour, district and congestion

λ1t, Φ1t, v1t λt+1,  Φt+1, vt+1

Ci Cj

Figure 1 – Illustrative representation of prediction instances
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Table 1 – Number of unique vehicles data has been collected, north-west/south-east bounds and area dimensions of districts

ID PNW PSE Width [m] Height [m]

D1 1876 (41.022000, 28.966000) (41.016000, 28.975000) 755.8 667.9

D2 3354 (40.995000, 28.841000) (40.989000, 28.849000) 672.1 667.9

D3 2132 (41.046000, 29.003000) (41.039490, 29.010000) 587.6 724.9

D4 1539 (41.082000, 28.970000) (41.076000, 28.976976) 585.3 667.9

D5 2654 (40.989000, 28.719000) (40.981000, 28.728000) 756.2 890.5

D6 1248 (40.999000, 29.021000) (40.989000, 29.028000) 588.1 1,113.1

D7 3584 (40.990000, 29.085000) (40.984000, 29.092000) 588.1 667.9

D8 2925 (41.083000, 29.009000) (41.076000, 29.015000) 503.4 779.2

D9 4000 (41.070000, 28.985000) (41.063000, 28.999000) 1,174.9 779.2

D10 2461 (40.995000, 29.034000) (40.989000, 29.041000) 588.1 667.9

D11 958 (41.060000, 28.913000) (41.055000, 28.919000) 503.6 556.5

D12 3073 (41.080000, 29.012000) (41.073000, 29.017000) 419.5 779.2

Figure 2 – Representation of GNSS data collected from the selected districts



Acarman T, Gündüz G. Vehicle Travel Time Estimation Using Sequence Prediction

4 Promet – Traffic&Transportation, Vol. 32, 2020, No. 1, 1-12

signed to manipulate and to encode certain hidden 
properties of the input data, which is generally a  
multi-dimensional array. The dimension of the in-
put arrays can be adapted such as 1D for sequenc-
es of text, 2D for grey scale images, and 3D for 
coloured images or videos. Three main layers are 
namely convolution, pooling, and fully-connected. 
Convolutional layer applies the convolution opera-
tion, i.e. performs dot products between given filters 
and local regions of the input data and creates the 
convolved features. The fully-connected layer is a 
former neural network layer and it has connections 

Column ID denotes the unique number of vehicles 
from the whole dataset that has reported valid trips 
from the corresponding district, and the dimension of 
the area is denoted by its width and height.

Table 2 gives the mean, standard deviation, skew 
and kurtosis properties of the reported vehicle 
speeds; D8 has the lowest and D10 has the highest 
mean speed. Also, Table 2 presents information about 
the sub-trips. The mean distance travelled, standard 
deviation and related statistics of the sub-trip travel 
distance distribution are given.

Particularly, the number of unique vehicles tra-
versing D1 for different days of the week and hour 
is plotted in Figure 3 to show how a particular day of 
the week and hour affects the district traffic conges-
tion. Traffic density is reached at its maximum peak 
on Friday afternoon. The number of unique vehicles 
from our dataset is used as a function that represents 
overall district traffic congestion.

4. SEQUENCE PREDICTION
Deep learning refers to an Artificial Neural Net-

work (ANN) and is a sub-field of machine learn-
ing. The deep term refers to the number of hidden 
layers in the neural network. ANN is biologically 
inspired by the architecture and function of the hu-
man brain that learns from large-scale observation-
al data. The usefulness and applicability of neural 
networks is enhanced by the introduction of CNN 
and RNN architectures. These architectures are de-
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Figure 3 – Number of unique vehicles present in D1 for 
different day of the week and hour

Table 2 – Statistical analysis of collected vehicle speed and sub-trip distance

District
Collected vehicle speed Sub-trip distance

Mean 
[km/h]

Standard 
deviation Skew Kurtosis Mean [m] Standard 

deviation Skew Kurtosis

D1 18.67 16.95 0.7765 0.1874 24.60 22.07 2.3196 9.2757

D2 16.76 25.42 1.8807 2.9224 22.00 22.93 1.5826 2.6389

D3 11.99 12.73 1.2090 1.5411 15.17 17.71 2.3737 7.1933

D4 18.08 13.12 1.0954 1.6214 18.15 20.18 2.3834 7.2759

D5 23.55 21.92 1.0413 1.0449 27.53 25.53 1.9070 4.1603

D6 10.42 14.81 1.6927 3.0640 32.51 27.92 1.4865 3.0003

D7 25.37 26.76 1.4888 1.8157 21.13 21.20 2.1015 5.6636

D8 8.02 13.97 2.3915 6.8270 16.23 20.88 2.8880 10.3628

D9 19.54 23.22 1.9410 3.7079 17.92 24.08 3.2460 13.8090

D10 24.69 19.39 0.6294 0.0578 35.52 27.57 1.3212 1.9767

D11 14.70 15.16 1.1494 1.0894 14.82 12.85 2.0523 6.6082

D12 17.60 16.78 1.3092 1.9920 17.76 18.32 2.1042 5.3458
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5. LINK EXTRACTION
For each district contributing to the collected 

FCD dataset, links are created in the first stage. A 
link is a directed edge between roads of the district, 
whose dynamic traffic data are collected. An unsu-
pervised link extraction method is adopted, which is 
compatible with the ad-hoc FCD and scalability of 
the district number or size is ensured. In order to ex-
tract links, the FCDs collected from each district are 
divided into clusters. Since the latitude and longitude 
distributions of the data are not uniform, i.e. they 
are reported from roads with different speeds, traf-
fic congestions, road size and traffic flows, the ‘bot-
tom-up’ hierarchical clustering with connectivity 
measures, agglomerative clustering is preferred. Ag-
glomerative clustering establishes clusters with un-
even sizes, which also solves the problem of uneven 
data distribution. A cluster satisfying the connectiv-
ity constraints assures the inclusion of a segment 
from a single road in the district. This connectiv-
ity procedure excludes data that do not belong to 
that particular road. The following clusters and their 
extracted centres, valid links are checked for each  
cluster centre and the closest neighbours. Between  
pairwise cluster centre coordinates, an edge is cre-
ated and divided into 50 evenly spaced points. If an 
FCD exists within a range of 5 metres in each in-
terval between these evenly spaced points then the 
edge is accepted as a valid link.

Figure 4 shows the resulting clusters for each dis-
trict where FCD data are plotted in different colours 
denoting its membership in an individual cluster. 
Also, cluster centres are marked with blue circles 
and the accepted links are plotted with a black line. 
In order to extract the link speeds for each sub-trip 
in the FCD, the following procedure is applied: the 
starting position and the ending position are matched 
with the closest cluster centre, and the closest start-
ing cluster centre is removed from the set of ending 
cluster centres. The vector constituted by a change 
in latitude-longitude coordinates is guaranteed to be 
in compliance with the heading of the link with a 
tolerance of 45º.

In Figure 4, if the sub-trip is assigned to an accept-
ed link, it is added in the set to establish the starting 
and the ending speed of the link. For intervals of 
five minutes, the set belonging to the link is aver-
aged where the average of the starting velocities of 
the sub-trips is used to create the starting velocity 
of the directed link, and the average of the end-
ing velocities of the sub-trips is used to create the  

to all units in the pooling layer. The pooling lay-
er corresponds to a gradual reduction of the spatial 
size of the convolved features and reduces the com-
putation cost and the size of parameters to be tuned. 
The current trend is seeking the promising and prac-
tical solution at discovering complicated patterns in 
high-dimensional and large-scale data [19]. 

LSTM units proposed to overcome the vanish-
ing gradient problem of RNNs have been success-
ful at improving the level in prediction accuracy 
[20], and they are widely used in time series [21] 
and sequence prediction [22, 23] applications. For 
each district, an RNN consisting of an LSTM layer 
and a densely connected layer is trained. The dis-
trict specific RNNs are deployed to learn non-lin-
ear spatio-temporal and district geometric charac-
teristics like GNSS noise errors, traffic congestion 
related to a day of the week, hour and position. 
From the FCD, sub-trips are extracted subject to the 
constraint that a vehicle should not be stationary, 
i.e. a travelling speed has to be greater than zero, 
and at most 15 seconds should elapse between two 
consecutive GNSS reports such that a sub-trip can 
be established between them. For two latitude and 
longitude coordinates denoted by λs, φs and λe, φe, 
and vehicle speed υs, υe at these given coordinates, 
where s and e denote starting and ending, respec-
tively, a sequence is defined related to |N|, which 
is the number of unique vehicles from our dataset 
in the district, ∆d denotes the distance between the 
coordinates for a week of the day and minute bin, 
the following network input and output is defined:

 – FRNN tD  ={day, λs, λe, φs, φe, υs, υe, ∆d} is a se-
quence fed to RNN∆t to estimate the travelling 
time;

 – YRNN tDt ={∆t} denotes travelling time estimation 
as an output of RNN∆t; 

 – FRNNvt 1+ ={day, λs, λe, φs, φe, υs, ∆t, ∆d} is a se-
quence fed to the RNNvt+1 to estimate the ending 
speed of the link at the next time instance;

 – YRNNvt 1+
t ={υe} denotes the ending speed of the 

link estimation as an output of RNNvt+1.
To summarize, RNN∆t generates the estimation 

of time to elapse for a sub-trip given in a sequence 
constituted by the week of the day, time of the day, 
historical district traffic congestion, position and 
velocity at given coordinates. For instance, Figure 1 
illustrates the travel time prediction of ∆t. RNNvt+1 
generates the final speed output when the vehicles 
complete their sub-trip. 
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of elapsed time between consecutive FCD data. 
Figure 6 shows the CDF of travelling speed of ve-
hicles and Figure 7 shows the CDF of the travelled 
sub-trip distance for the selected districts. Districts 
D2, D6, and D10 have a higher distribution of longer 
elapsed times between data reports, and districts D1 
and D3 have a higher distribution of shorter elapsed 
times. Also, districts D5, D10, and D11 have a higher 
distribution of high-speed trips. Lastly, districts D6 
and D10 show a higher distribution of sub-trips with 
higher travelled distances.

The total number of sub-trips for each district 
is given under the column entitled |Data| in Table 3; 
50% of these data are used for testing purposes. For 
comparison purposes with respect to the proposed 
RNN with LSTM cell layer, a Multilayer Percep-
tron (MLP) with two hidden layers is also trained 
to test the function mapping approach versus the 
sequence-based prediction system. Since accelera-
tion values between the consecutive coordinates of 

ending velocity of the link. After the link speeds are 
extracted, all FCD velocities are replaced with the 
speeds of the link. 

6. EXPERIMENTAL EVALUATION
For each district, the collected FCD is sorted 

according to the day of the week and time in de-
scending order, and every other element is divided 
into training and testing data in order to provide a 
balanced number of observations for each day of 
the week and minute bin. Twenty-five percent of 
the dataset is used for training, the other 25% for 
validation and the remaining 50% of the dataset is 
used for testing. Since a large number of trip data is 
available, the training ratio is kept low for the pur-
pose of increasing the generalization performance 
of the RNNs. The training batch size is chosen as 
32 observations and it is done for 50 epochs. Figure 5 
shows the Cumulative Distribution Function (CDF) 

Figure 4 – Representation of unsupervised link extraction
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has a varying number of sub-trips, the estimation 
approaches are tested and evaluated using both met-
rics.

Figure 8 illustrates the estimation responses of 
trained RNNs compared to the ground-truth values. 
The top row of Figure 8 shows the travel time esti-
mations of RNN∆t, sub-trip travel time in seconds is 
plotted with respect to the sub-trip index. Ground-
truth values are sorted according to travel time and 
plotted with red step line; the corresponding RNN∆t 
output of the sub-trip sequences are shown with blue 
points. Similarly, the bottom row of Figure 8 shows 
the estimation responses of ending travelling speed 
with respect to the sub-trip index. For all twelve dis-
tricts, the travel time estimations are compared to 
the ground-truth in Figure 9, and ending travel speed 
estimations are plotted in Figure 10. In Figure 9, the 
first figure in the first row compares travel time ver-
sus prediction for district D1 and the last figure com-
pares the responses for D12. In Figure 10, the first fig-
ure in the first row compares the ending travel speed 
versus prediction for district D1 and the last figure 
compares the responses for D12. District numbering 
is increased in each row from left to right. The travel 
time prediction belonging to some districts includes 
higher prediction error variance but the overall step-
like change is captured.

Table 3 gives RMSE and MAE of predicted sub-
trip times compared to the actual sub-trip time re-
lating to districts and prediction method, whereas 
Table 4 presents the final speed prediction responses 

the sub-trip are not measured, the travel time and 
the travel speed are also predicted by using a linear 
velocity change model, which is denoted by sym-
bol L in Table 3. The smallest error is highlighted for 
easier comparison. For testing and comparison pur-
poses, the root-mean-square error (RMSE) and the 
mean absolute error (MAE) are adopted. RMSE is 
useful in capturing undesirable large errors, while 
the number of observations can affect RMSE. MAE 
weights differences equally [24]. Since each district 
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Table 3 – RMSE and MAE related to districts and predicted sub-trip time

|Sub-trip| RNN∆t [s] MLP∆t [s] L∆t [s]
D1RMSE  
D1MAE

6,250 1.384
0.683

2.076
1.193

1.436
0.671

D2RMSE
D2MAE

6,833 1.704
1.021

2.775
1.949

1.854
1.037

D3RMSE
D3MAE

17,429 1.333
0.785

1.968
1.165

1.440
0.750

D4RMSE
D4MAE

13,135 1.280
0.654

2.038
1.223

1.362
0.687

D5RMSE
D5MAE

15,996 1.208
0.648

2.012
1.283

1.255
0.627

D6RMSE
D6MAE

18,222 1.691
1.104

2.303
1.579

1.943
1.165

D7RMSE
D7MAE

14,055 1.357
0.730

2.141
1.210

1.495
0.768

D8RMSE
D8MAE

32,679 1.452
0.754

2.242
1.315

1.571
0.837

D9RMSE
D9MAE

42,006 1.314
0.765

2.514
1.448

1.547
0.836

D10RMSE
D10MAE

22,424 1.574
0.942

2.049
1.312

1.710
0.893

D11RMSE
D11MAE

16,823 1.190
0.574

1.688
0.875

1.231
0.612

D12RMSE
D12MAE

13,190 1.433
0.745

2.164
1.289

1.612
0.831

Table 4 – RMSE and MAE related to districts and ending travel speed estimation

RNNvt+1 [km/h] MLPvt+1 [km/h] Lvt+1 [km/h]
D1RMSE  
D1MAE

5.205
3.608

7.633
5.365

5.910
3.906

D2RMSE  
D2MAE

4.506
3.283

7.143
5.171

6.371
4.344

D3RMSE  
D3MAE

4.045
2.810

6.105
4.287

6.737
4.632

D4RMSE  
D4MAE

4.048
2.887

5.690
4.211

6.614
4.668

D5RMSE  
D5MAE

4.185
3.046

5.510
3.945

6.513
4.367

D6RMSE  
D6MAE

4.946
3.631

7.011
5.252

7.971
5.750

D7RMSE  
D7MAE

5.372
3.904

7.003
4.983

8.171
5.407

D8RMSE  
D8MAE

3.937
2.752

5.894
3.958

7.729
5.543

D9RMSE  
D9MAE

4.103
2.725

6.146
4.045

8.418
5.806

D10RMSE  
D10MAE

5.771
4.209

8.216
6.346

8.649
5.916

D11RMSE  
D11MAE

4.013
2.940

5.725
4.186

6.657
4.594

D12RMSE  
D12MAE

4.157
2.977

6.659
4.871

6.812
4.778
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Figure 9 – Predicted travel time of sub-trips compared with respect to the ground-truth for all twelve districts
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Figure 10 – RMSE and MAE related to each district and the prediction responses of ending speed with respect to the sub-trip index
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ARAÇ SEYAHAT SÜRESININ DIZI TAHMINI  
KULLANILARAK KESTIRILMESI

ÖZET
Bu makalede, dizi tahmini kullanan bölge esaslı seya-

hat süresi ve trafik hızı tahmin yöntemi önerilmektedir. 
34 gün boyunca 8,317 araçtan toplanan hareketli araba 
verisi değerlendirme amaçlı olarak kullanılmaktadır. On 
iki ilçe seçilerek uzay-zamansal doğrusal olmayan ilişkil-
er Tekrarlayan Sinir Ağları kullanılarak öğrenilmektedir. 
Toplam seyahatin zaman tahmini, ardışık iki GNSS ölçüm 
verisi arasında oluşan bölünmüş alt yolculukların seya-
hat süresi tahmini ile çözülmektedir. Uzun Kısa-Süreli 
Bellek hücreleri ile yolculuk süresi ve alt yolculukların 
son hızı dizi tahmini kullanılarak öğrenilir. Dizi, hafta 
içerisinde gün meta-bilgileri, aracın rota başlangıç ve 
bitiş konumlarıyla ilgili dinamik bilgiler ve araç tarafın-
dan katedilen yol bölümünün ortalama seyahat hızı da-
hil edilerek tanımlanır. Nihai seyahat süresi tanımlanan 
dizi için tahmin edilmektedir. Dizi esaslı tahminleme ümit 
vaat eden sonuçlar vermektedir, kare kök ortalama hata 
ve ortalama mutlak hata metrikleri karşılaştırıldığında 
fonksiyon haritalama ve parametrik olmayan doğrusal 
hız değişimine dayalı yöntemlerden daha yüksek perfor-
mans sağlamaktadır.

ANAHTAR KELİMELER
seyahat süresi tahmini; tekrarlayan sinir ağları;  
dizi kestirimi; akıllı ulaşım sistemleri;
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