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ABSTRACT

This paper proposes a region-based travel time and
traffic speed prediction method using sequence predic-
tion. Floating Car Data collected from 8,317 vehicles
during 34 days are used for evaluation purposes. Twelve
districts are chosen and the spatio-temporal non-linear
relations are learned with Recurrent Neural Networks.
Time estimation of the total trip is solved by travel time
estimation of the divided sub-trips, which are constituted
between two consecutive GNSS measurement data. The
travel time and final speed of sub-trips are learned with
Long Short-term Memory cells using sequence predic-
tion. A sequence is defined by including the day of the
week meta-information, dynamic information about ve-
hicle route start and end positions, and average travel
speed of the road segment that has been traversed by
the vehicle. The final travel time is estimated for this se-
quence. The sequence-based prediction shows promising
results, outperforms function mapping and non-paramet-
ric linear velocity change based methods in terms of root-
mean-square error and mean absolute error metrics.
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1. INTRODUCTION

Short-to-medium-term travel time and traffic
speed prediction has been one of the crucial compo-
nents of Intelligent Transportation System (ITS) ap-
plications. Travel time and traffic speed prediction
methods are separated based on the underlying data
acquisition mechanisms and prediction approaches
categorized either parametrically or non-parametri-
cally. Data acquisition is largely performed by sta-
tionary sensors such as remote traffic microwave
sensors [1] or loop detectors [2, 3]. As an alternative
solution to remote sensors, travel time is predicted
using mobile phone GNSS data or Floating Car Data

(FCD) [4-6]. Parametric approaches include predic-
tion using regression trees [7], time-series analysis
[8] while non-parametric approaches adopt pattern
searching and artificial intelligence, like estimating
network speed by processing traffic images taken
from a traffic camera with Convolutional Neural
Networks (CNNs) [9].

The proposal includes travel time and traffic
speed estimation method based on sequence pre-
diction that is extracted from a collection of large
spatio-temporal GNSS data. Districts are smaller
regions selected from the overall data collection
region subject to their local speed distribution and
noise variance. Non-linear traffic dynamics related
to the district and meta information are captured
using Recurrent Neural Networks (RNNs) that are
formed of Long Short-term Memory (LSTM) cells.
For evaluation and test purposes, data were collect-
ed in a metropolitan city of Istanbul, Turkey, over a
period of 34 days, from a fleet of 8,317 passenger
cars.

District specific travel time and traffic speed
estimation are learned by breaking down the en-
tire trip of vehicles into smaller sub-trips. A sub-
trip is defined as the trip between two consecutive
GNSS measurement-based records with at most an
elapsed time of 15 seconds. In Figure 1, for cluster
centres with possible links, a link starting and end-
ing speed is established by relying on the available
data. Afterwards, for each sub-trip belonging to
the links, elapsed travel time Atz is predicted with
RNN,, according to the meta-information of the day
of the week, which is fine-tuned using district coor-
dinates and link start and end velocities. Using At,
velocity v, is predicted by RNN,  at the next time
instance as well.
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Figure I — [llustrative representation of prediction instances

Then, sub-trips are processed by district specif-
ic RNNs and predicted travel time estimations are
stitched together to re-create the actual trip. The link
travel speed is constituted by dynamic link speed
of the roads traversed by vehicles. The starting
and ending average link speed is calculated for the
interval of 5 minutes by using the map-matched ve-
hicle sub-trip speed data, respectively. Furthermore,
this method provides continuous arterial speed in-
formation due to the analysis of sub-trips.

2. RELATED WORK

Short-term freeway travel time prediction based
on a dynamic linear model using Bayesian inference
was studied in [10]. The data were acquired from
a loop detector and on a sequential basis, the state
of a priori knowledge has been revised by newly
available information. In [11], time lags related to
elapsed time in segments were conducted using
seasonal auto-regressive integrated moving aver-
age and Kalman filter. The gradient boosting meth-
od with time-lags related to previous elapsed times
was presented in [7], the data were provided both by
GNSS receivers mounted on vehicles and station-
ary sensors. An online freeway corridor travel time
prediction was studied using Takagi-Sugeno-Kang
Fuzzy Neural Network in [12]. Non-parametric esti-
mation using Euclidean distances of FCD was stud-
ied in [13]. Travel time estimation based on GNSS
measurement data has been performed in [14] using
a suffix-tree-based method. In [15], the uncertain-
ties in travel time predictions were regulated by the
proposal of probabilistic prediction intervals, which
are constructed using Bayesian techniques with cov-
erage above the nominal confidence level of 90%.

Traffic speed estimation performed using the fu-
sion of loop-detectors and probe vehicles was eval-
uated with GNSS data in [16]. The use of station-
ary sensors such as loop detectors and interpolating
speed between measurements has been evaluated
as inaccurate in congested and transition conditions
[17]. Probe vehicle data sampling was investigated

in [18] and concluded that sampling protocol re-
garding time or space affects the accuracy of esti-
mation.

3. FLOATING CAR DATA COLLECTION

For the time period between January and Febru-
ary 2018, data from 8,317 vehicle on-board track-
ing systems were collected in Istanbul, Turkey.
These tracking systems involve a GNSS receiver,
an odometer measuring the vehicle wheel angular
velocity and a cellular wireless communication mo-
dem to transmit measurement data to the back-end
server. From each vehicle alongside the spatio-tem-
poral information of latitude-longitude coordinates
and time provided by a GNSS receiver, and vehicle
velocity information measured at a higher frequen-
cy by an odometer on the vehicle was transmitted to
the back-end server. For travel time and speed esti-
mation purposes, twelve districts have been select-
ed, subject to different characteristics constituted
by either high and low-speed roads, curvatures, and
different levels in GNSS accuracy due to the non-
line-of-sight effects of urban canyons. Figure 2 shows
data collected in these selected districts, where the
first district D, is shown in the top-left, the second
district D, is shown in the top-centre and the last dis-
trict D, is plotted in the bottom right. The reported
FCD coordinates are plotted with different colours
denoting various vehicle speed ranges in order to
give an insight into the types of roads, areas that
get congested throughout the time of the day and to
illustrate the characteristics of each individual dis-
trict. Each district has different characteristics, with
varying legal speed limit roads, road curvatures and
GNSS noise relating to urban canyons. The data are
coloured according to the vehicle velocity between
0-20 km/h, 20-50 km/h, 50-90 km/h and the veloc-
ity higher than 90 km/h coloured in blue, green, or-
ange, and red, respectively.

Table 1 gives north-west and south-east coordi-
nates of the district bounds in the forms of latitude

and longitude, denoted by P, and P, respectively.
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Figure 2 — Representation of GNSS data collected from the selected districts

Table 1 — Number of unique vehicles data has been collected, north-west/south-east bounds and area dimensions of districts

1D Py Py Width [m] Height [m]
D, 1876 (41.022000, 28.966000) (41.016000, 28.975000) 755.8 667.9
D, 3354 (40.995000, 28.841000) (40.989000, 28.849000) 672.1 667.9
D, 2132 (41.046000, 29.003000) (41.039490, 29.010000) 587.6 724.9
D, 1539 (41.082000, 28.970000) (41.076000, 28.976976) 585.3 667.9
Dy 2654 (40.989000, 28.719000) (40.981000, 28.728000) 756.2 890.5
Dy 1248 (40.999000, 29.021000) (40.989000, 29.028000) 588.1 1,113.1
D, 3584 (40.990000, 29.085000) (40.984000, 29.092000) 588.1 667.9
Dy 2925 (41.083000, 29.009000) (41.076000, 29.015000) 503.4 779.2
D, 4000 (41.070000, 28.985000) (41.063000, 28.999000) 1,174.9 779.2
D, 2461 (40.995000, 29.034000) (40.989000, 29.041000) 588.1 667.9
Dy, 958 (41.060000, 28.913000) (41.055000, 28.919000) 503.6 556.5
D, 3073 (41.080000, 29.012000) (41.073000, 29.017000) 419.5 779.2
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Table 2 — Statistical analysis of collected vehicle speed and sub-trip distance

Collected vehicle speed Sub-trip distance

pistriet [ll\frzjllql] géi?i?;i Skew Kurtosis Mean [m] (it:?/lili?gi Skew Kurtosis
D, 18.67 16.95 0.7765 0.1874 24.60 22.07 2.3196 9.2757
D, 16.76 25.42 1.8807 2.9224 22.00 22.93 1.5826 2.6389
D, 11.99 12.73 1.2090 1.5411 15.17 17.71 2.3737 7.1933
D, 18.08 13.12 1.0954 1.6214 18.15 20.18 2.3834 7.2759
D 23.55 21.92 1.0413 1.0449 27.53 25.53 1.9070 4.1603
Dy 10.42 14.81 1.6927 3.0640 32.51 27.92 1.4865 3.0003
D, 25.37 26.76 1.4888 1.8157 21.13 21.20 2.1015 5.6636
Dy 8.02 13.97 2.3915 6.8270 16.23 20.88 2.8880 10.3628
D, 19.54 23.22 1.9410 3.7079 17.92 24.08 3.2460 13.8090
D, 24.69 19.39 0.6294 0.0578 35.52 27.57 1.3212 1.9767
D, 14.70 15.16 1.1494 1.0894 14.82 12.85 2.0523 6.6082
D,, 17.60 16.78 1.3092 1.9920 17.76 18.32 2.1042 5.3458

Column ID denotes the unique number of vehicles
from the whole dataset that has reported valid trips
from the corresponding district, and the dimension of
the area is denoted by its width and height.

Table 2 gives the mean, standard deviation, skew
and kurtosis properties of the reported vehicle
speeds; Dy has the lowest and D, has the highest
mean speed. Also, Tuble 2 presents information about
the sub-trips. The mean distance travelled, standard
deviation and related statistics of the sub-trip travel
distance distribution are given.

Particularly, the number of unique vehicles tra-
versing D, for different days of the week and hour
is plotted in Figure 3 to show how a particular day of
the week and hour affects the district traffic conges-
tion. Traffic density is reached at its maximum peak
on Friday afternoon. The number of unique vehicles
from our dataset is used as a function that represents
overall district traffic congestion.

4. SEQUENCE PREDICTION

Deep learning refers to an Artificial Neural Net-
work (ANN) and is a sub-field of machine learn-
ing. The deep term refers to the number of hidden
layers in the neural network. ANN is biologically
inspired by the architecture and function of the hu-
man brain that learns from large-scale observation-
al data. The usefulness and applicability of neural
networks is enhanced by the introduction of CNN
and RNN architectures. These architectures are de-

Figure 3 — Number of unique vehicles present in D1 for
different day of the week and hour

signed to manipulate and to encode certain hidden
properties of the input data, which is generally a
multi-dimensional array. The dimension of the in-
put arrays can be adapted such as 1D for sequenc-
es of text, 2D for grey scale images, and 3D for
coloured images or videos. Three main layers are
namely convolution, pooling, and fully-connected.
Convolutional layer applies the convolution opera-
tion, i.e. performs dot products between given filters
and local regions of the input data and creates the
convolved features. The fully-connected layer is a
former neural network layer and it has connections
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to all units in the pooling layer. The pooling lay-

er corresponds to a gradual reduction of the spatial

size of the convolved features and reduces the com-
putation cost and the size of parameters to be tuned.

The current trend is seeking the promising and prac-

tical solution at discovering complicated patterns in

high-dimensional and large-scale data [19].

LSTM units proposed to overcome the vanish-
ing gradient problem of RNNs have been success-
ful at improving the level in prediction accuracy
[20], and they are widely used in time series [21]
and sequence prediction [22, 23] applications. For
each district, an RNN consisting of an LSTM layer
and a densely connected layer is trained. The dis-
trict specific RNNs are deployed to learn non-lin-
ear spatio-temporal and district geometric charac-
teristics like GNSS noise errors, traffic congestion
related to a day of the week, hour and position.
From the FCD, sub-trips are extracted subject to the
constraint that a vehicle should not be stationary,
i.e. a travelling speed has to be greater than zero,
and at most 15 seconds should elapse between two
consecutive GNSS reports such that a sub-trip can
be established between them. For two latitude and
longitude coordinates denoted by 4, ¢_and 4, ¢,
and vehicle speed v, v, at these given coordinates,
where s and e denote starting and ending, respec-
tively, a sequence is defined related to |N], which
is the number of unique vehicles from our dataset
in the district, Ad denotes the distance between the
coordinates for a week of the day and minute bin,
the following network input and output is defined:
- Frwva ={day, 4, 4, 0, 9, v, v, Ad} is a se-

quence fed to RNN,, to estimate the travelling

time;

- Yrwa ={At} denotes travelling time estimation
as an output of RNN,, ;

- Frav. ={day, A, 4, ¢, ¢, v, At, Ad} is a se-
quence fed to the RNN, | to estimate the ending
speed of the link at the next time instance;

- YRNNV,.IZ{Ue} denotes the ending speed of the
link estimation as an output of RNN, .

To summarize, RNN,, generates the estimation
of time to elapse for a sub-trip given in a sequence
constituted by the week of the day, time of the day,
historical district traffic congestion, position and
velocity at given coordinates. For instance, Figure 1
illustrates the travel time prediction of Az. RNN, |
generates the final speed output when the vehicles
complete their sub-trip.

5. LINK EXTRACTION

For each district contributing to the collected
FCD dataset, links are created in the first stage. A
link is a directed edge between roads of the district,
whose dynamic traffic data are collected. An unsu-
pervised link extraction method is adopted, which is
compatible with the ad-hoc FCD and scalability of
the district number or size is ensured. In order to ex-
tract links, the FCDs collected from each district are
divided into clusters. Since the latitude and longitude
distributions of the data are not uniform, i.e. they
are reported from roads with different speeds, traf-
fic congestions, road size and traffic flows, the ‘bot-
tom-up’ hierarchical clustering with connectivity
measures, agglomerative clustering is preferred. Ag-
glomerative clustering establishes clusters with un-
even sizes, which also solves the problem of uneven
data distribution. A cluster satisfying the connectiv-
ity constraints assures the inclusion of a segment
from a single road in the district. This connectiv-
ity procedure excludes data that do not belong to
that particular road. The following clusters and their
extracted centres, valid links are checked for each
cluster centre and the closest neighbours. Between
pairwise cluster centre coordinates, an edge is cre-
ated and divided into 50 evenly spaced points. If an
FCD exists within a range of 5 metres in each in-
terval between these evenly spaced points then the
edge is accepted as a valid link.

Figure 4 shows the resulting clusters for each dis-
trict where FCD data are plotted in different colours
denoting its membership in an individual cluster.
Also, cluster centres are marked with blue circles
and the accepted links are plotted with a black line.
In order to extract the link speeds for each sub-trip
in the FCD, the following procedure is applied: the
starting position and the ending position are matched
with the closest cluster centre, and the closest start-
ing cluster centre is removed from the set of ending
cluster centres. The vector constituted by a change
in latitude-longitude coordinates is guaranteed to be
in compliance with the heading of the link with a
tolerance of 45°.

In Figure 4, if the sub-trip is assigned to an accept-
ed link, it is added in the set to establish the starting
and the ending speed of the link. For intervals of
five minutes, the set belonging to the link is aver-
aged where the average of the starting velocities of
the sub-trips is used to create the starting velocity
of the directed link, and the average of the end-
ing velocities of the sub-trips is used to create the
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Figure 4 — Representation of unsupervised link extraction

ending velocity of the link. After the link speeds are
extracted, all FCD velocities are replaced with the
speeds of the link.

6. EXPERIMENTAL EVALUATION

For each district, the collected FCD is sorted
according to the day of the week and time in de-
scending order, and every other element is divided
into training and testing data in order to provide a
balanced number of observations for each day of
the week and minute bin. Twenty-five percent of
the dataset is used for training, the other 25% for
validation and the remaining 50% of the dataset is
used for testing. Since a large number of trip data is
available, the training ratio is kept low for the pur-
pose of increasing the generalization performance
of the RNNs. The training batch size is chosen as
32 observations and it is done for 50 epochs. Figure 5
shows the Cumulative Distribution Function (CDF)

of elapsed time between consecutive FCD data.
Figure 6 shows the CDF of travelling speed of ve-
hicles and Figure 7 shows the CDF of the travelled
sub-trip distance for the selected districts. Districts
D,, D, and D, have a higher distribution of longer
elapsed times between data reports, and districts D,
and D, have a higher distribution of shorter elapsed
times. Also, districts D, D,, and D, have a higher
distribution of high-speed trips. Lastly, districts Dy
and D, show a higher distribution of sub-trips with
higher travelled distances.

The total number of sub-trips for each district
is given under the column entitled [Data| in Table 3;
50% of these data are used for testing purposes. For
comparison purposes with respect to the proposed
RNN with LSTM cell layer, a Multilayer Percep-
tron (MLP) with two hidden layers is also trained
to test the function mapping approach versus the
sequence-based prediction system. Since accelera-
tion values between the consecutive coordinates of

6
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the sub-trip are not measured, the travel time and
the travel speed are also predicted by using a linear
velocity change model, which is denoted by sym-
bol L in 7able 3. The smallest error is highlighted for
easier comparison. For testing and comparison pur-
poses, the root-mean-square error (RMSE) and the
mean absolute error (MAE) are adopted. RMSE is
useful in capturing undesirable large errors, while
the number of observations can affect RMSE. MAE
weights differences equally [24]. Since each district

has a varying number of sub-trips, the estimation
approaches are tested and evaluated using both met-
rics.

Figure 8 illustrates the estimation responses of
trained RNNs compared to the ground-truth values.
The top row of Figure 8 shows the travel time esti-
mations of RNN, , sub-trip travel time in seconds is
plotted with respect to the sub-trip index. Ground-
truth values are sorted according to travel time and
plotted with red step line; the corresponding RNN,,
output of the sub-trip sequences are shown with blue
points. Similarly, the bottom row of Figure § shows
the estimation responses of ending travelling speed
with respect to the sub-trip index. For all twelve dis-
tricts, the travel time estimations are compared to
the ground-truth in Figure 9, and ending travel speed
estimations are plotted in Figure 10. In Figure 9, the
first figure in the first row compares travel time ver-
sus prediction for district D, and the last figure com-
pares the responses for D,,. In Figure 10, the first fig-
ure in the first row compares the ending travel speed
versus prediction for district D, and the last figure
compares the responses for D, ,. District numbering
is increased in each row from left to right. The travel
time prediction belonging to some districts includes
higher prediction error variance but the overall step-
like change is captured.

Table 3 gives RMSE and MAE of predicted sub-
trip times compared to the actual sub-trip time re-
lating to districts and prediction method, whereas
Table 4 presents the final speed prediction responses

Estimated sub-trip travel time

20

Seconds

0 500 1,000 1,500 2,000 2,500 3,000

Estimated speed at #+1

100

80

60

km/h

40

20

0 500 1,000 1,500 2,000 2,500 3,000

Figure 8 — Predicted travel time and final speed of sub-trips
compared with respect to the ground-truth for district D2
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Table 3 — RMSE and MAFE related to districts and predicted sub-trip time

|Sub-trip| RNN,, [s] MLP,, [s] Ly, [s]
T | e i R 5
\MAE - - -
Dyorrsr 6533 1704 2.775 1.854
Dyyyir 1.021 1.949 1.037
D 1.333 1.968 1.440
3RMSE
Dyyyr 17429 0.785 1.165 0.750
Dyrurss 13135 1.280 2.038 1362
Dyyyir 0.654 1.223 0.687
D 1.208 2.012 1.255
SRMSE
Dayyr 15,996 0.648 1.283 0.627
D 1.691 2.303 1.943
6RMSE
Depyor 18,222 1.104 1.579 1.165
D 1.357 2.141 1.495
TRMSE
Dyyyr 14,055 0.730 1.210 0.768
Dyuursr 1.452 2242 1571
Dyyyir 32,679 0.754 1315 0.837
D 1.314 2.514 1.547
ORMSE 42,006
Doy 0.765 1.448 0.836
D 1.574 2.049 1.710
10RMSE
Dyyyiir 22424 0.942 1312 0.893
D, st 1190 1,688 1231
16,823
Dyjvur 0.574 0.875 0.612
Dyyrurse 1.433 2.164 1612
13,190
Dy 0.745 1.289 0.831

Table 4 — RMSE and MAE related to districts and ending travel speed estimation

RNN,  [km/h] MLP,  [km/h] L, [km/h]
D usse 5.205 7.633 5.910
Dy 3.608 5.365 3.906
Dyprse 4.506 7.143 6371
Dy 3.283 5.171 4344
Dy 4.045 6.105 6.737
Dy 2.810 4287 4.632
Dypussi 4.048 5.690 6.614
Dyyyur 2.887 4211 4.668
Dapuse 4.185 5.510 6.513
Dy 3.046 3.945 4367
Duse 4.946 7.011 7.971
Dy 3.631 5252 5.750
Dousse 5372 7.003 8.171
Dopir 3.904 4.983 5.407
Dgause 3.937 5.894 7.729
Dy 2.752 3.958 5.543
Dopysr 4.103 6.146 8.418
Doy 2.725 4.045 5.806
D yopussi 5771 8.216 8.649
Dyorsar 4.209 6.346 5.916
D pssi 4013 5.725 6.657
D ya 2.940 4.186 4594
D s 4.157 6.659 6.812
Dyorr 2977 4.871 4778
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Figure 9 — Predicted travel time of sub-trips compared with respect to the ground-truth for all twelve districts
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concerning the same districts. Sequence prediction
assured by the RNN method outperforms both pre-
dictions by linear speed change and MLP function
mapping in terms of RMSE and performs better than
the linear speed change in 8 out of 12 districts in
terms of MAE. Linear speed change approach per-
forms better than MLP in both error metrics. For ten
out of the twelve districts, RNN performs sub-sec-
ond MAE subject to the ground truth elapsed times
in the interval of 1 to 15 seconds. The lowest RMSE
value is achieved for D,,, which has the smallest
mean sub-trip travel distances. Following com-
parisons plotted in Figure 5, district Dy, which has
a higher portion of longer sub-trip times than Dj,
lower RMSE and MAE values are achieved. This
observation can underlie that prediction time inter-
val length may not be the most significant feature
to improve the estimation accuracy. Sub-trip final
speed estimation is also performed most accurately
by the RNN, where the linear change prediction and
MLP approaches exchange rankings according to
the district and evaluation metrics.

7. CONCLUSION

The region-based travel time estimation by di-
viding the total trip into sub-trips between the ob-
served GNSS coordinates and by introducing RNNs
using sequence prediction has been proposed.
During experimental evaluation studies, using a
low training split such as in our study 25% train-
ing and 25% validation, the generalization perfor-
mance of RNNs outperforms both MLP and linear
velocity change prediction results in root-mean-
square error. This performance is assured in § out
of 12 district results with lower mean absolute error
values. For the twelve inspected districts, the sub-
trip travel times for ten out of twelve districts are
predicted with sub-second MAE value with respect
to ground-truth observations that are reported in the
interval of 1 to 15 seconds. With sequence-based
approach performing the best travel time prediction
using linear speed change, denoted by L ranks sec-
ond compared to a prediction by function mapping
MLP. However, for the given the elapsed time of the
sub-trip, the final link speed prediction by the RNN
approach reaches at the highest level in prediction
performance metrics. Furthermore, the prediction
performance of the Multilayer Perceptron method
and the linear velocity change model varies for de-
pending on the districts and the evaluation metrics.
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ARAC SEYAHAT SURESININ DIZI TAHMINI
KULLANILARAK KESTIRILMESI

OZET

Bu makalede, dizi tahmini kullanan bolge esasli seya-
hat siiresi ve trafik hizi tahmin yéntemi onerilmektedir.
34 giin boyunca 8,317 aragtan toplanan hareketli araba
verisi degerlendirme amagl olarak kullanilmaktadwr. On
iki ilge segilerek uzay-zamansal dogrusal olmayan iliskil-
er Tekrarlayan Sinir Aglart kullanilarak 6grenilmektedir.
Toplam seyahatin zaman tahmini, ardisik iki GNSS 6l¢iim
verisi arasinda olusan boliinmiis alt yolculuklarin seya-
hat siiresi tahmini ile ¢oziilmektedir. Uzun Kisa-Stireli
Bellek hiicreleri ile yolculuk siiresi ve alt yolculuklarin
son hizt dizi tahmini kullanilarak 6grenilir. Dizi, hafta
icerisinde giin meta-bilgileri, aracin rota baslangi¢ ve
bitis konumlariyla ilgili dinamik bilgiler ve arag tarafin-
dan katedilen yol boliimiiniin ortalama seyahat hizi da-
hil edilerek tanimlanir. Nihai seyahat siiresi tanimlanan
dizi i¢in tahmin edilmektedir. Dizi esasli tahminleme iimit
vaat eden sonuglar vermektedir, kare kok ortalama hata
ve ortalama mutlak hata metrikleri karsilastirildiginda
fonksiyon haritalama ve parametrik olmayan dogrusal
hiz degisimine dayali yontemlerden daha yiiksek perfor-
mans saglamaktadr.

ANAHTAR KELIMELER

seyahat stiresi tahmini; tekrarlayan sinir aglari;
dizi kestirimi; akilli ulasim sistemleri;
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