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ABSTRACT

The accuracy and reliability in predicting short-term 
traffic flow is important. The K-nearest neighbors (K-NN) 
approach has been widely used as a nonparametric mod-
el for traffic flow prediction. However, the reliability of the 
K-NN model results is unknown and the uncertainty of traffic 
flow point prediction needs to be quantified. To this end, we 
extended the K-NN approach by constructing the prediction 
interval associated with the point prediction. Recognizing 
the stochastic nature of traffic, time interval used to mea-
sure traffic flow rate is remarkably influential. In this paper, 
extensive tests have also been conducted after aggregating 
real traffic flow data into time intervals, ranging from 3 min-
utes to 30 minutes. The results show that the performance 
of traffic flow prediction can be improved when the time in-
terval increases. More importantly, when the time interval 
is shorter than 10 minutes, K-NN can generate higher ac-
curacy of the point prediction than the selected benchmark 
model. This finding suggests the K-NN model may be more 
appropriate for traffic flow point and interval prediction at a 
shorter time interval.

KEY WORDS

short-term traffic flow forecasting; point prediction; predic-
tion interval; K-nearest neighbors; seasonal autoregressive 
integrated moving average (SARIMA); generalized autore-
gressive conditional heteroscedasticity (GARCH);

1. INTRODUCTION

The performance of intelligent transportation sys-
tems (ITS) largely depends on the accuracy and reli-
ability of the real-time traffic information. Timely and 
prevalent traffic flow data enable the implementation 
of advanced traffic management strategies such as 
dynamic route guidance and adaptive signal control. 
In particular, short-term traffic flow prediction is fun-
damental for improving urban transportation systems 
operations, management and safety. Hence, many 
forecasting models have been developed and applied 
for predicting short-term traffic flow. In real world, 
the complexity of urban traffic due to large dispari-
ties among highway capacities and speeds, weather  
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The remainder of the paper is organized as follows: 
after the introduction section, literature review is pre-
sented, followed by a methodology section. Next, a 
case study is presented. Finally, conclusions are sum-
marized and future work is discussed.

2. LITERATURE REVIEW
The point prediction of short-term traffic conditions 

has been intensively investigated in the past decades. 
Since the late 1970s, parametric methods assumed 
that traffic condition data are linear stochastic in na-
ture so that a linear structure can be applied to predict 
future traffic conditions. Typical parametric methods 
include historical average approach [13], autoregres-
sive integrated moving average (ARIMA) models [14-
16], Kalman filter method [7, 17-18] and spectral rep-
resentation [19].

Unlike parametric methods, nonparametric meth-
ods are not restricted by the linearity assumption and, 
hence, nonlinear structure can be used to predict 
the future traffic condition. In general, nonparamet-
ric methods are driven by data. Typical nonparamet-
ric methods include neural network models [20-23], 
K-nearest neighbors [24-28], symbolic regression 
method [29] and support vector machine [30-32]. Re-
fer to [33] for more prediction methods and additional 
details.

The uncertainty of traffic prediction can be de-
scribed and measured through a prediction interval 
around the predicted average of the future traffic 
condition [34]. Guo et al. [37] validated the hetero-
scedastic nature of traffic conditional series. The sta-
tistical volatility method can be used to construct the 
prediction interval based on the conditional variance 
of traffic flow series [1, 4, 6, 9-11, 38]. There are a 
few methods for constructing prediction intervals for 
neural networks, such as the bootstrap, Bayesian and 
mean-variance prediction methods. Bootstrap is a re-
sampling method that can yield prediction intervals 
with a high coverage probability [34-35]. The Bayes-
ian method can be combined with neural networks for 
generating prediction intervals [5, 36]. The mean-vari-
ance prediction interval construction is based on the 
assumption that prediction error variance can be es-
timated through neural networks [2]. Compared with 
extensive research on point forecasting, uncertainty 
quantification is still at its infancy.

When forecasting short-term traffic condition, time 
interval plays an important role of determining the 
performance of short-term traffic flow prediction. The 
Highway Capacity Manual [39] recommended that a 
15-min time interval can be used for most of the proce-
dures and 5-min or less time intervals should be avoid-
ed. The majority of short-term traffic flow forecasting 
literature is focused on the development of predic-
tion methods for time intervals ranging from 5-min to  

conditions, driver behavior and transportation policies 
constantly challenges the development of tangible 
and technically sound traffic flow forecasting models.

The traditional short-term traffic flow forecasting 
aims to predict an average value according to histor-
ical traffic patterns and trends. As there is always a 
degree of uncertainty associated with future point esti-
mate, quantifying the reliability of the point prediction 
assures the expected range of future traffic fluctua-
tions [1-2]. Although the accuracy of traffic prediction 
may remain the same, traffic managers and travelers 
can benefit from a reliability measurement by making 
informed decisions with calculated risk. Traffic flow 
interval prediction has been considered a key perfor-
mance measure of transportation systems and hence 
methodologies have been proposed to quantify the re-
liability of the point prediction [3-7].

In short-term traffic flow forecasting, time interval 
serves as both the aggregation interval of traffic vol-
ume data and the forecasting horizon. Traffic flow rate 
calculation can be affected by the selection of time in-
terval. Smith and Ulmer [8] investigated the impact of 
time interval on traffic flow series and found that traf-
fic flow rate becomes stable with the increase of time 
interval. Guo et al. [1] investigated the effect of time 
intervals of traffic flow series on performance of traffic 
flow forecasting and found that the prediction meth-
ods needed further development for very short (e.g. 
less than 5 and 5-min) intervals. Overall, time interval 
is an important factor of determining the performance 
of short-term traffic forecasting.

Many methods have been proposed to predict 
short-term traffic condition. These methods can be 
generally classified into parametric or nonparametric. 
Parametric methods require a set of fixed parameters 
as part of their mathematical or statistical formulation. 
By contrast, nonparametric methods are generally 
driven by data and less constrained by the underlying 
model assumptions. Among parametric methods, sta-
tistical volatility models, e.g. the generalized autore-
gressive conditional heteroscedasticity (GARCH) mod-
el can quantify the uncertainty for short-term traffic 
forecasting through using a prediction interval [1, 4, 6, 
9-11]. However, most of the nonparametric methods 
do not directly provide the uncertainty quantification 
for short-term traffic forecasting. As a nonparametric 
method, the K-nearest neighbors has been widely 
used to predict the point estimate for short-term traffic 
condition, but without interval prediction [12]. Target-
ing this gap, the objective of this study is to facilitate 
or enhance the K-NN method through quantifying the 
uncertainty of the point prediction, e.g. generating 
prediction interval for the K-NN method. To this end, 
comparative studies between statistical methods and 
the K-NN method will be conducted and the effect of 
time interval on forecasting performance will also be 
investigated for both point and interval prediction.
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In order to select the best neighbors from the his-
torical data, it is necessary to measure the degree of 
proximity between two state vectors. In this study, Eu-
clidean distance was applied due to its simplicity and 
effectiveness.

, , , , ,d X X i N1 2 3i t i f= - =  (1)

where Xt denotes the current state vector and Xi de-
notes the i-th state vector in the historical database. 
The K historical state vector samples with the least 
distance to the current state vector are selected to 
generate the forecasts.

3.2 The point prediction using K-NN

According to the distance between the current and 
historical state vectors, the ranked K-nearest neigh-
bors can be directly used to calculate point traffic flow 
predictions. For example, straight average of the se-
lected neighbors was used for predicting the traffic 
flow in Smith et al. [25]. In this paper, four forecast 
functions are formulated in Equations 2-5.
Straight average:
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where V t 1+t^ h  is the future traffic flow at the next time 
interval, Vi(t) is the traffic flow value in the i-th histori-
cal state vector at time t, k is the number of selected 
nearest neighbors, Vc(t) is the traffic flow at the current 
time, Vhist,c(t) is the historical traffic flow observed at 
the current time and Vhist,i(t) is the traffic flow in the i-th 
historical state vector.

3.3 Prediction interval construction

The conventional application of K-NN is to generate 
point future traffic flow which does not carry informa-
tion regarding the level of confidence. According to the 

15-min [7, 15, 19-20, 23, 25-27]. Also, some studies 
applied shorter time intervals (less than 5-min) [22, 
24]. However, there is a limited number of studies on 
the selection of appropriate time intervals and their in-
fluence on the forecasting methods.

With the increasing demand for timely and proac-
tive traffic control, traffic flow data with very short time 
intervals became more important. A comprehensive 
investigation is necessary for pairing forecasting meth-
ods with time intervals to individual applications such 
that robustness, accuracy and practical utility can be 
maximized [1]. Reliable short-term traffic condition 
forecasting requires the provision of prediction inter-
val to quantify the uncertainty. Most of the literature 
on short-term traffic flow forecasting focus on improv-
ing the performance of the point prediction and the 
quantification of uncertainty associated with the point 
prediction is still to be investigated. The K-NN meth-
od is a proven method for the point prediction but has 
not been applied to generate the prediction interval. 
This paper extended the K-NN method to quantify the 
uncertainty of the point prediction and evaluated the 
impact of time intervals accordingly.

3. METHODOLOGY

3.1 State vector definition for the K-NN method

The fundamental assumption of K-NN is that fu-
ture states are similar to their neighbors of the past 
[25]. For a specific time interval, a classical state 
vector defines the collected traffic flow data at times  
t, t-1, … , t-d, where d is an appropriate number of lags. 
For instance, Smith et al. [25] defined a hybrid state 
vector that included three lagged observations and 
two historical averages for the 15-min traffic flow data. 
The hybrid state vector was proven to be reasonable 
in terms of sufficiency and simplicity. The same defini-
tion of a hybrid state vector was adopted as shown in 
Table 1. In Table 1, Vc(t) is the traffic flow at current time 
t and Vhist,c(t) is the historical average of traffic flow at 
the time of day and day of week associated with time 
interval t. Considering the stability of traffic flow series 
at shorter and longer time intervals, the lagged obser-
vations at shorter time intervals were added and the 
lagged observations at the longer time interval were 
reduced. Specifically, three state vectors for different 
time intervals ranging from 3-min to 30-min were de-
fined.

Table 1 – Definition of state vector for different time intervals

Time intervals Defined state vector

T ≤ 10 min [Vc(t), Vc(t-1), Vc(t-2), Vc(t-3), Vc(t-4), Vhist,c(t-2), Vhist,c(t-1), Vhist,c(t), Vhist,c(t+1)]

10 min < T ≤  20 min [Vc(t), Vc(t-1), Vc(t-2), Vc(t-3), Vhist,c(t-1), Vhist,c(t), Vhist,c(t+1)]

T > 20 min X(t)=[Vc(t), Vc(t-1), Vc(t-2), Vhist,c(t), Vhist,c(t+1)]
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3.4 Prediction performance measures

The performance of the point prediction can be 
evaluated by the mean absolute percentage error 
(MAPE), mean absolute error (MAE) and root mean 
square error (RMSE), and smaller values of these 
three measures indicate better model performance.

MAPE n X
X X1

i
i i

i

n

1
= -

=

t/  (8)

MAE n X X1
i i

i

n

1
= -

=

t/  (9)

RMSE n n X X1
i i

i

n
2

1
= -

=

t^ h/  (10)

where Xi denotes the real-world observation, Xi stands 
for the forecasts and n is the total number of observa-
tions Xit .

For interval prediction performance evaluation, 
Guo et al. [1] proposed two guiding principles: (a) real 
observations should fall within the prediction intervals 
with respect to the selected confidence level and (b) 
narrower predicted intervals, if valid, are more infor-
mative than the wider ones. Therefore, prediction in-
terval kickoff percentage and prediction interval width-
to-flow ratio are used to evaluate interval prediction. 
Their formulations are expressed in Equations 11 and 
12, respectively.

, , , ,
,
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where Xi denotes the actual observations, Xi
low stands 

for the forecasts of the lower bound, Xi
up stands for the 

forecasts of the upper bound and n is the total number 
of observations. For the 95% confidence interval, the 
kickoff percentage should be close to 5%. Meanwhile, 
the width-to-flow ratio should be as small as possible.

4. EMPIRICAL STUDY
In this section, an empirical study was conducted 

using the traffic data from three highway locations 
around London, UK. The number of nearest neighbors 
for the K-NN method was identified, based on which, 
both the point prediction and the prediction interval 
were computed and compared with the benchmark 
method of seasonal autoregressive integrated moving 
average (SARIMA) plus GARCH, i.e., SARIMA + GARCH.

4.1 Data description

The traffic flows used in this study were from Sta-
tion 4762A in the southwest of the M25 motorway, 
Stations 2737A and 2808B in the northwest of the M1 
motorway, London, UK. The traffic data were collected 
by Highways Agency through the Motorway Incident De-
tection and Automatic Signaling (MIDAS) system which 

point prediction based on conventional K-NN, when a 
series of traffic flow data (v1, v2, …, vn) are observed at 
times (t1, t2, …, tn), future traffic flow can be estimat-
ed by processing the selected neighbors at each time. 
Clearly, the prediction value changes over time and 
the number and the composition of the neighbors will 
also change accordingly. Therefore, for each point val-
ue predicted, the time-dependent neighbors from the 
historical traffic data at the same time can be chosen 
to construct the prediction interval. Figure 1 illustrates 
the relationship between the point prediction and the 
prediction interval.

Time

Y

X

Fl
ow Point prediction

Real traffic flow

Upper prediction 
interval

Lower prediction 
interval

Kn

K3

K1

K2

K4

...

Ti

Figure 1 – Relationship between target vt and prediction 
interval

Figure 1 shows that at a specific time Ti, n nearest 
neighbors Ks (denoted by the gray dots) can generate 
a predicted traffic flow (i.e., point prediction), denoted 
by the black dot. Based on the selected nearest neigh-
bors of Ks, a prediction interval consisting of upper 
and lower prediction limits can be provided to predict 
the range of traffic flow oscillation during the next time 
interval. At a specific time Ti the prediction interval for 
the point prediction can be computed using the vari-
ance of the selected nearest neighbors as Equation 6.

n y y1
1

i
i

ij i
j

n
2 2

1

i

v = - -
=

t r^ h/  (6)

where ni is the number of the selected neighbors at 
time Ti, yij is the j-th selected neighbors at time Ti and 
yir  is the predicted traffic flow at the time Ti. The (1-a) 

prediction interval or confidence interval at Ti can be 
formulated as Equation 7.

,
n

y t n 1
i

i i i! a v-r t^ h
 (7)

where t(h,a) denotes the a-th quantile of the Student's 
t-distribution on h degrees of freedom. The prediction 
interval should contain the future traffic flow at the 
given confidence level and the width of the prediction 
interval indicates the degree of the uncertainty.
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neighbors for Station 2737a. In Figure 2, it is clear that 
the number of neighbors affects the accuracy of the 
point prediction. A large decrease in the forecast er-
ror can be observed before the number of neighbors 
reaches 10; afterwards, the forecast error gradually 
declines and converges. In addition, the forecast error 
decreases clearly with the increase of time interval, 
indicating that the stability and predictability of traffic 
flow are positively correlated.

The model performance pertaining to the number 
of neighbors and interval length for the prediction 
interval at 95% confidence level was calculated. In 
Figure 3a, the kickoff percentage rapidly ascends from 
around 5% to 75% with the increase of the number of 
nearest neighbors, and the ascending rate is higher 
from 0 to 10 nearest neighbors and decreases after-
wards. In Figure 3b, the width-to-flow ratio rapidly de-
scends when the number of neighbors is approaching 
4 and then becomes stable. Both observations show 
the decreased prediction performance with the in-
crease of the number of nearest neighbors.

Table 3 lists the optimal number of nearest neigh-
bors for point and interval prediction. For all the four 
forecasting models, the number of nearest neighbors 
decreases gradually with the increase of time interval. 
The number of nearest neighbors is minimum when 
the time interval is 30 minutes. For each of the four 
models, the minimum numbers of nearest neigh-
bors at 30-min time interval are 10, 30, 6 and 10,  
respectively. In contrast, only two nearest neighbors 
are needed to generate workable prediction intervals 
for all four forecast functions across all tested time in-
tervals.

archives traffic condition data on a 1-min interval, 24 
h per day and 7 days per week. The descriptive infor-
mation for the stations is listed in Table 2. The original 
1-min traffic data for each station were then aggregat-
ed into traffic flow series with different time intervals 
(i.e., 3, 5, 7, 10, 12, 15, 18, 20, 24, 28 and 30 min).

4.2 Study design 

This study was designed to evaluate the proposed 
prediction intervals based on K-NN and to investigate 
the effect of different time intervals on the perfor-
mance of prediction models. The performance of the 
point prediction of selected forecasting models was 
measured for each of the 11 time intervals. The SARI-
MA + GARCH model was used as a benchmark.

For K-NN, data collected for the first nine months 
(from January/February to September) were used 
as historical data and data for the last three months 
(from October to December) were used as test data. 
For SARIMA + GARCH, weekly seasonal period was 
used. Different from K-NN, SARIMA + GARCH does not 
require a historical database. Therefore, the data from 
the last week in September was used to activate the 
SARIMA + GARCH model.

4.3 Identification of the number of neighbors K 

It is important to use the appropriate number of 
nearest neighbors to improve both point prediction and 
prediction interval. A wide range of nearest neighbors 
was considered, ranging from one candidate to fifty 
candidates. For brevity, the straight average forecast 
method was used to present the number of nearest  

Table 2 – Descriptive information for the collected stations

Region Highway Stations Number of lanes Start End Simple size
UK M25 4762a 4 1/1/2002 12/31/2002 35,040
UK M1 2737a 3 2/13/2002 12/31/2002 30,912
UK M1 2808b 3 2/13/2002 12/31/2002 30,912

M
AP

E

Number of nearest neighbors (K)

20%

18%

16%

14%

12%

10%

8%

5 10 15 20 25 30 35 40 45 50

3 min
5 min
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18 min
20 min
24 min
28 min
30 min

Figure 2 – The point prediction MAPE at 2737a
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point prediction than the SARIMA model. Conversely, 
the SARIMA model outperformed K-NN for longer time 
intervals.

4.5 Prediction interval comparison

In addition to the point prediction, the K-NN models 
can obtain prediction interval of traffic flow. Given a 
95% confident interval, the measures of kickoff per-
centage and width-to-flow ratio for prediction interval 
coverage are presented in Figures 7 and 8, respectively.

Recall that kickoff percentage of prediction inter-
vals should be close to 5%, for 95% confidence level. 
Figure 7 shows that at 95% confidence level, the kick-
off percentages from four K-NN forecast models are 
all around 5% for all the time intervals and across all 
the three stations. Comparatively, the GARCH model 
has a 2% kickoff percentage at Stations 2737a and 
2808b, and a 2.5% kickoff at Station 4762a. There-
fore, four K-NN models are better than GARCH in terms 
of kickoff percentage. In addition, Figure 8 shows that 
the width-to-flow ratios for GARCH model declines to 
0.8 which is much smaller than K-NN with the values 
descending from 3.5 to 2. Therefore, the performance 
of prediction interval generation of the K-NN model is 
mixed compared with that of the conventional GARCH 
model.

4.4 The point prediction comparison

After determining the number of nearest neigh-
bors for K-NN, the comparison of the point prediction 
between K-NN and benchmark models is presented 
in Figures 4-6, respectively. In Figure 4, the MAPEs of 
SARIMA gradually decrease with the increase of time  
interval and the four forecast models of K-NN grad-
ually decrease before the time interval reaches 24 
minutes. Specifically, for Station 2737a (Figure 4a) 
and Station 2808b (Figure 4b), when the time interval 
is less than 15 minutes, the forecast model Adjusted 
by V(t) of K-NN is better than SARIMA and the other 
three K-NN forecast models. When the time interval is 
between 15 to 30 minutes, SARIMA gradually outper-
forms the rest. Similarly, for Station 4762a (Figure 4c), 
K-NN shows better performance than SARIMA before 
the time interval reaches 10 minutes, while SARIMA 
outperforms K-NN when the time interval is between 
10 and 30 minutes. It is evident that the K-NN model is 
more appropriate for traffic flow forecasting for shorter 
time intervals and the SARIMA model is more appropri-
ate for longer time intervals.

For MAE and RMSE, the results are shown in Fig-
ures 5 and 6, respectively, with similar patterns as 
demonstrated in Figure 4. Specifically, for shorter time 
intervals, K-NN can obtain better performance of the 

Table 3 – Determination of the optimal number of nearest neighbors

Time interval [min]
Straight average V(t) Vhist(t+1) V(t) and Vhist(t+1)

Point Interval Point Interval Point Interval Point Interval
3 40 2 35 2 23 2 35 2
5 30 2 30 2 20 2 27 2
7 23 2 30 2 13 2 24 2

10 15 2 22 2 12 2 16 2
12 21 2 25 2 12 2 22 2
15 13 2 25 2 10 2 14 2
18 11 2 25 2 9 2 15 2
20 15 2 30 2 10 2 14 2
24 12 2 17 2 8 2 12 2
28 10 2 17 2 6 2 10 2
30 10 2 30 2 6 2 10 2

Number of nearest neighbors (K) Number of nearest neighbors (K)

a) b)
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Figure 3 – Interval prediction performance at 95% confidence interval at 2737a
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Figure 4 – MAPE comparison of the point prediction

Figure 5 – MAE comparison of the point prediction
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Figure 6 – RMSE comparison of the point prediction

Figure 7 – Kickoff percentage comparison of prediction interval under 95% confidence interval
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As opposed to fitting and optimizing parametric mod-
els (e.g. SARIMA), the main advantage of the K-NN 
model is that the predictions are generated from the 
historical pattern of traffic flow, without being restrict-
ed by the linearity assumption of traffic data. However, 
compared to the GARCH model, the K-NN model in this 
study did not consider the time-dependent correlation 
of prediction intervals.

Future studies are recommended to further devel-
op the prediction interval of short-term traffic flow fore-
casting. In addition, future studies can also be con-
ducted in accommodating the generated prediction 
interval in transportation management and control 
applications. For example, the prediction interval of 
traffic flow rate can be used in signal timing to improve 
the reliability of road network traffic signal control.
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5. CONCLUSIONS
Short-term traffic flow forecasting models are cru-

cial for supporting proactive traffic control and man-
agement. Desirable short-term traffic flow forecasting 
should include both the point prediction of traffic flow 
and its prediction interval for measuring the predic-
tion uncertainty. Due to the stochastic nature of traffic 
flow, the prediction interval is increasingly important 
to traffic managers and travelers who prefer to make 
decisions under known uncertainties.

This study extends the K-NN model to construct the 
prediction interval at the 95% confidence level. As a 
nonparametric regression model, the K-NN model is 
compared to the benchmark SARIMA + GARCH model. 
In an empirical study, real-world traffic flow data were 
aggregated into various time intervals ranging from 3 
to 30 minutes. Extensive tests have been conducted 
for both K-NN and SARIMA + GARCH models. The re-
sults provide consistent findings pertinent to the effect 
of time interval on the modeling performance of the 
point prediction and the prediction interval between 
the two methods. The investigation of the point pre-
diction shows that K-NN can generate higher accuracy 
when a time interval is shorter than 10 minutes; how-
ever, the performance of prediction interval of K-NN is 
mixed compared with the conventional GARCH model. 
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Figure 8 – Width-to-flow ratio comparison of prediction interval under 95% confidence interval
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时间间隔对短时交通流K近邻预测模型的影响

摘要

短期交通流预测的准确性和可靠性是非常重要的。K近
邻方法(K-NN)作为一种非参数交通流预测模型已得到了广
泛的应用。然而，K-NN模型预测结果的可靠性没有得到足
够的关注，交通流点预测的不确定性需要量化。为此，我
们对K-NN方法进行了扩展，构造了与点预测相关联的预测
区间。考虑交通流的随机性，用来汇集交通流的时间间隔
具有十分重要的影响作用。在本文的实验分析中，交通流
数据将按照不同的时间间隔进行汇集从而进行分析，时间
间隔从3分钟到30分钟。结果表明，交通流预测的精度随
着时间间隔的增加而增加。更重要的是，当时间间隔小于
10分钟时，相比较基准模型，K-NN可以产生更高的点预
测精度。这表明K-NN模型可能更适合于较短时间间隔下的

交通流点预测和区间预测。

关键词

短时交通流预测；点预测；预测区间；K近邻方法；季节
性差分自回归移动平均模型(SARIMA)；广义自回归条件异

方差模型(GARCH)
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