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ABSTRACT

Measuring carbon emissions is an essential step in tak-
ing required action to fight global warming. This research 
presents a computational method for measuring transport 
related carbon emissions in a healthcare supply network. 
The network configuration significantly impacts carbon 
emissions. First, a multi-objective mathematical program-
ing model is developed for designing a healthcare supply 
network in the form of a two-graph location routing problem 
under demand and fuel consumption uncertainty. Objective 
functions are minimizing total cost and minimizing total fuel 
consumption. In the presented model, the demand of each 
customer must be completely satisfied in each time period, 
and backlog is not permitted. The number and capacity of 
vehicles are determined, and vehicles are heterogeneous. 
Furthermore, fuel consumption depends on traveling dis-
tance, vehicle and road conditions, and the load of a vehi-
cle. The centroid method is applied to face demand uncer-
tainty. Next, a multi-objective non-dominated ranked genetic 
algorithm (M-NRGA) is proposed to solve the model. Then, 
a Monte Carlo based approach is presented for measuring 
transport-related carbon emissions based on fuel consump-
tion in supply network. Finally, the proposed approach is ap-
plied to the case of a healthcare supply network in the Fars 
province in Iran. The obtained results illustrate that the pro-
posed approach is a practical tool in designing healthcare 
supply networks and measuring transport-related carbon 
emissions in the network. 
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1. INTRODUCTION
Environmental changes and global warming are 

among the most important challenges humans have 
faced in the last hundred years [1, 2]. Earth system 
simulation shows that the current trend of greenhouse 

gas emissions may affect most ecosystems and the 
lives of over 3.5 billion people worldwide as early as 
2050 [3]. Carbon dioxide (CO2) and carbon monox-
ide (CO) are the primary greenhouse gases emitted 
through human activities. As the most important 
cause of long-term climate change, carbon emissions 
provide a good baseline to assess progress and eval-
uate the consequences. The current emission trends 
continue to follow scenarios that lead to the highest 
global temperature increases [4]. Carbon emissions 
produced by human activities usually come from burn-
ing fossil fuels, e.g. oil, natural gas, coal, and wood [5].

To overcome this challenge, governments and in-
dustry sectors are working to understand their own 
carbon footprint and explore the required actions. Re-
ducing the global temperature and associated climate 
change impacts can be achieved by decreasing the 
emissions of greenhouse gases as soon as possible 
[6]. The experiences of the largest global corporations 
as well as those of start-up companies indicate how 
these companies can profitably reduce greenhouse 
gas emissions in their supply chains [7]. Approximately 
45% of greenhouse gas emissions is caused by pro-
duction and transportation of goods [8]. Hence, it is 
important to restrict such emissions in a supply net-
work. 

In the past decades, many researchers have fo-
cused on modeling the uncertainty in designing supply 
networks. For this aim, different stochastic modeling 
approaches have been successfully applied to sup-
ply chain production planning problems considering 
the randomness concept. However, in some applica-
tions, the probability distributions are not available 
or reliable [9]. On the other hand, in some real appli-
cations, the nature of retailer’s demand is imprecise. 
In this case, fuzzy set theory (FST) provides a proper 
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decision-making with regard to procurement, produc-
tion, and inventory management using relatively sim-
ple and widely used models. 

The transportation of goods accounts for a large 
amount of carbon releasing all over the world. TRCE 
cannot be measured easily because of the large 
amount of data required and the use of different stan-
dards for carbon footprint calculation [14]. Several 
researchers proposed various methods for comput-
ing carbon emissions in a supply chain [15-20]. For 
instance, they calculated the carbon footprint of dif-
ferent feedstock for dairy cattle by applying life cycle 
assessment (LCA) [18]. Others proposed a fast and 
vigorous technique applying a novel approach based 
upon multi-gene genetic programming (MGGP) to de-
termine carbon dioxide minimum miscibility pressure 
(CO2 MMP) for carbon dioxide injection processes [19]. 
In [20], a “corrected average emission model” was 
provided, i.e., an improved average speed model that 
accurately computed CO2 emissions on the road.

Transportation consumes energy severely world-
wide and is overwhelmingly oil-oriented. For this 
reason, TRCE is one of the main sources of global 
carbon emissions and also contributes to air quality 
concerns, particularly in and around major population 
centers [21]. In this regard, [22] showed that most of 
the imported oil in the USA is consumed only in the 
transportation sector. Additionally, one third of total 
greenhouse gas (GHG) emissions is produced by this 
sector. For reducing GHG emissions and oil consump-
tion, different policy scenarios must be considered in 
the US transportation sector. Therefore, proper green 
transportation network design is a suitable solution for 
decreasing carbon emission [23], [24]. 

Recently, in the period of global competition, the 
network design has been considered as one of the 
strategic decision problems. A network design problem 
focuses on the number and locations of raw material 
suppliers, manufacturing plants, and inventory ware-
houses. In an extended time horizon, the decisions in 
this regard include selecting the distribution channel 
from suppliers to customers as well as determining 
the transportation volume among distributed facilities 
[25]. The supply network design problem is well docu-
mented in the literature, and the readers are referred 
to the review the paper [26]. 

The vehicle routing problem (VRP) is the problem 
of designing routes for delivery vehicles with known 
capacities operating from a single depot to supply a 
number of customers with known locations and known 
demands for a certain commodity. Vehicle routes are 
designed to minimize several objectives, like the total 
distance traveled [27]. For instance, the authors in 
[28] presented a new mathematical model in order 
to measure and evaluate the efficiency of the periodic 
vehicle routing problem (PVRP) in a competitive envi-
ronment. A general model for dynamic vehicle routing 

framework for handling uncertainty or vagueness in a 
dataset. In decision sciences, fuzzy set theory has a 
great impact on preference modeling and multi-criteria 
assessment by taking into account the user needs in 
optimization techniques [10]. Hence, in the proposed 
method, trapezoidal fuzzy numbers are used to char-
acterize the fuzzy demand for products, vehicle per-
formance, and road conditions.  Note that in most 
real applications of a supply chain problem there is 
not enough historical data for the previous demand 
values. In these cases, using fuzzy numbers can be 
used to describe the decision models for the external 
demand of a network. Although there is no conclusive 
methodology for measuring carbon emissions at pres-
ent [11, 12], this research provides a computational 
method for measuring transport related carbon emis-
sions (TRCE) in a supply network. First, a mathemat-
ical model to design proper supply network is devel-
oped, and then a computational method is proposed 
for measuring TRCE in this network, based on the Mon-
te Carlo approach. In Section 2, a literature overview 
of supply network design and measuring carbon emis-
sions is given. The mathematical model to design the 
supply network is presented in Section 3, followed by 
the solution approach and TRCE measuring approach. 
The case study, i.e., Fars healthcare supply network, is 
presented in Section 5. At the end, the conclusion and 
future study considerations finalize the paper.

2. LITERATURE REVIEW 
Generally, the causes of carbon emissions can be 

divided into natural and human sources. The main 
carbon emissions due to human activities includes 
industries like cement and electricity production, 
commercial and residential causes, deforestation, ag-
riculture, and transportation. Also, the major carbon 
footprint applications in the UK can be categorized by 
seven areas, including national emissions inventories 
and trade, emission drivers, economic sectors, supply 
chains, organizations, household consumption and 
lifestyles, as well as sub-national emission inventories. 
Researchers in [8, 13] state that to restrict the emis-
sions of greenhouse gases, companies should take 
into account their business practices and operational 
policies along with focusing on their physical process-
es (inefficient equipment and facilities, redesigning 
products and packaging, finding less polluting sourc-
es of energy, or instituting energy saving programs). 
They attempted to explore how operational decisions 
across the supply chain affect the carbon footprint of 
these supply chains and the extent to which concerns 
about carbon emissions are covered by adjusting oper-
ational decisions and improving collaboration among 
supply chain partners. They also showed how carbon 
emission concerns can be integrated into operational  
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prove their idea, they created a probabilistic technique 
for measuring and evaluating that impact by using the 
Markov theorem.

In this paper, we simultaneously take into account 
the environmental concerns and uncertainty condi-
tions in a healthcare supply network. A multi-objective 
non-dominated ranked genetic algorithm (M-NRGA) is 
proposed to solve the developed multi-objective math-
ematical model. A Monte Carlo based approach is 
presented to measure transport-related carbon emis-
sions based on fuel consumption in a supply network. 
We also represent the application of the proposed ap-
proach to the case of the healthcare supply network in 
the Fars province in Iran.

3. PROBLEM DEFINITION 

3.1 Healthcare supply network

In the presented healthcare supply network, a 
number of distribution centers should be located 
among candidate sites. Furthermore, delivery routes 
between the central depot and these distribution cen-
ters as well as delivery routes for a set of customers 
must be established in such a way that the total sys-
tem cost is minimized. Therefore, the network config-
uration includes a two-graph location routing problem. 
In one graph, a fleet of vehicles with known capacities 
is operating from a central depot to supply a number 
of distribution centers which should be located among 
candidate sites. All vehicle routes start and end at the 
central depot. The demand of each distribution center 
must be completely satisfied, and backlog is not per-
mitted. All distribution centers are visited exactly once 
by exactly one vehicle in each time period, so split de-
livery is not permitted. The sum of distribution centers’ 
demand for any vehicle route may not exceed vehicle 
capacity.  In the other graph, the network configura-
tion is a multi-depot vehicle routing problem in which 
a fleet of vehicles with known capacities operate from 
a central depot to supply a number of customers with 
known locations. Each vehicle route starts and ends 
at the same distribution center. The demand of each 
customer must be completely satisfied, and backlog is 
not permitted. All customers are visited exactly once 
by exactly one vehicle in each time period, so split de-
livery is not permitted; the sum of customers’ demand 
for any vehicle route may not exceed the vehicle ca-
pacity. A direct delivery from the central depot to the 
customers is not permitted, as well as a delivery from 
one distribution center to the other. In summary, we 
face a two-graph location routing problem, i.e., to si-
multaneously determine the number and locations 
of distribution centers, assignment of customers to 
distribution centers, and vehicle routes. Figure 1 illus-
trates the healthcare supply network. In the proposed 
model, there are multiple time periods in the planning 

problem with time windows (DVRPTW) considering the 
minimization of the total distance as the main objec-
tive was presented in [29]. A review paper highlighted 
major exact algorithms in the VRP literature [30]. They 
focused on mathematical formulations, relaxations, 
and recent exact methods for two main VRP variants, 
including the capacitated VRP (CVRP) and the VRP 
with time windows (VRPTW). For detailed information 
about VRP, please refer to the review paper [30].

As one type of the network design problem, the 
location routing problem (LRP) deals with the combi-
nation of both the facility location problem (FLP) and 
the vehicle routing problem (VRP). Since these two 
categories of problems belong to the class of NP-hard 
problems, the LRP is also an NP-hard problem. In the 
LRP, the entire consumer demand should be satisfied 
in such a way that a facility’s operating and fixed costs 
are minimized while vehicle capacities must be con-
sidered and routing costs must be reduced simultane-
ously [31]. Several researchers have developed heu-
ristic and meta-heuristic algorithms for LRP [32-34]. 
A new heuristic algorithm for the capacitated location 
routing problem (CLRP) was presented in [35], called 
granular variable tabu neighborhood search (GVTNS). 
In order to solve the periodic location routing problem 
(PLRP), a large neighborhood search (LNS) algorithm 
was presented in [36].

Recently, researchers and practitioners have taken 
into account the environmental concerns in designing 
supply networks. In this respect, decisions on supply 
chain design have to be integrated with those relat-
ed to environmental concerns. In other words, a green 
supply chain network design problem contains an ini-
tial investment into environmental protection equip-
ment or techniques to ensure its long-term benefit to 
environmental indicators [37]. Fortunately, due to the 
importance of the green supply chain concept, a lot of 
research has been focused on this area. Please see 
the comprehensive survey provided by [38] for more 
detailed information. Most research on designing a 
green supply network has considered a determinis-
tic behavior for the supply network. However, in most 
practical situations, we may face numerous sources of 
technical and/or commercial uncertainty in the design 
phase.

The concept of uncertainty in LRP problems is con-
sidered in several studies [33], [39-43]. The authors 
in [44] described the impact of network type on un-
certainty in demand estimation. They suggested that 
the configuration of the network can affect the final 
accumulation of uncertainty in the supply chain. The 
authors in [45] identified the impact of the accumula-
tion of individual delivery time uncertainties on over-
all delivery time uncertainty. Also, they stated that the 
type of network and their structures have a significant 
influence on delivery time uncertainty. In order to 
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Assumptions
 –  The selection of the central depot and customers’ 

location is beyond the scope of this paper, but the 
locations of distribution centers are determined by 
the presented model 

 –  The vehicles are heterogeneous 
 –  Split delivery is not permitted
 –  The capacities of distribution centers and vehicles 

are definite
 –  The routing process is performed between custom-

er – distribution center echelons and central depot 
– distribution center echelons. Hence, the VRP is a 
multi-graph problem. 

 –  It is not possible to stock pharmaceutical substanc-
es for future periods in distribution centers

 –  Demand is considered to be uncertain
 –  Fuel consumption per distance unit is considered 

to be uncertain
 –  Fuel consumption per load unit is considered to be 

uncertain
 –  Time windows for distribution centers and custom-

ers are not considered.

3.2 Mathematical model for healthcare supply 
network design

The proposed mathematical programing formula-
tion is presented below:

Sets:
I  - Set of customers indexed by i=1,2,…,N; where N 
   is the number of customers
J  - Set of candidate locations indexed by  
   j=0,1,2,…,P; where P is the number of candidate  
   locations. 0 is the central depots index 
G - Set of all supply network graph nodes  
   G=I,J={0,1,2,…,P,P+1,…,P+N} 
A - Set of arcs (i,j)
T  - Set of time periods indexed by t=1,2,…,K;  
   where K is the number of time periods in the  
   planning horizon
M - Set of products indexed by m=1,2,…,M; where M  
   is the number of products distributed in the  
   supply network
V - Set of vehicles indexed by v=1,2,…,V; where V is  
   the number of available vehicles

Parameters:
dim

tu  - Customer i demand for product m in the period t
jp  - Fixed cost for opening a distribution center in  

    the candidate location j
vg  - Fixed cost for using vehicle v
ijc  - The distance along the arc (i,j)!A
ij
vs  - Traveling cost per distance unit for vehicle v in  

    arc (i,j)!A
j
ma  - The capacity of distribution center placed in  

    node j for the product m. Capacity of central  
    depot ( )m

0a  is infinitive for all products.

horizon. The customers’ demand for each product is 
a trapezoidal fuzzy number ( du =(d1,d2,d3,d4) where: 
d1≤d2≤d3≤d4) on R ). The membership function of the 
trapezoidal fuzzy number is presented in Equation 1 
[46].
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In Equation 1, if d2=d3, then tu  is a triangular fuzzy 
number. Also, if d1=d2=t3=t4, then tu  is a crisp num-
ber. Figure 2 illustrates the membership function of the 
trapezoidal fuzzy number.

The number and capacity of vehicles and candi-
date locations for distribution centers are determined. 
Vehicles are heterogeneous and can take only one 
tour in each time period. The objectives are minimizing 
the total cost of the system and minimizing total fuel 
consumption. Fuel consumption depends on traveling 
distance, vehicle and road conditions, and the load of 
a vehicle. All of these quotients are trapezoidal fuzzy 
numbers.

Consumer

Candidate site

Central depot

Distribution 
center

Distribution 
center

Figure 1 – Healthcare supply network

nd(x)
1

d1 d2 d3 d4

Figure 2 – Membership function of the trapezoidal fuzzy 
number



Nasrollahi M, Razmi J, Ghodsi R. A Computational Method for Measuring Transport Related Carbon Emissions in a Healthcare Supply...

Promet – Traffic & Transportation, Vol. 30, 2018, No. 6, 693-708 697

' '
; & ; ;

U U NX P
k J j J v V t T

1
0

kv
t

jv
t

kj
vt

6 6 6

#

! ! ! !

- + -
=Y

 (14)

; ;X X i G v V t T0ij
vt vt

j Gj G
ji 6 6 6! !!- =

!!

//  (15)

X X Y 1jk
vt vt

ij
t

k Ik I
ki #+ +

!!

/ /  (16)

,X 0 1ij
tv ! " ,  (17)

,Y 0 1ij
t ! " ,  (18)

,Z 0 1j ! " ,  (19)

L 0ij
vt $u  (20)

U N 0iv
t ,! " ,  (21)

U P 0iv
t ,! " ,  (22)

Objective function 2 shows the sum of fixed costs of 
opening distribution centers in candidate locations, 
the sum of fixed costs for using vehicles at the central 
depot, the sum of fixed costs for using vehicles at dis-
tribution centers, and transportation costs. Objective 
function 3 represents fuel consumption considering 
traveling distance, vehicle and road conditions, and 
the load of a vehicle.

Constraint 4 assures customers are allocated to 
distribution centers within their capacity. Constraint 
5 states that the demand of distribution center j is 
equal to sum of the demands of customers which are 
allocated to distribution center j. Constraint 6 ensures 
that customers are visited within vehicle capacity. 
Constraints 7 and 8 ensure that all customers and all 
distribution centers are visited once in each time peri-
od. Constraint 9 states that each vehicle can take only 
one tour in each time period. Constraints 10, 11, and 12 
show the load of vehicles at each route. Sub-tour elim-
ination in both graphs is assured in Constraints 13 and 
14. The continuity of tours and returning the vehicle to 
the origin depot is ensured in Constraint 15. Constraint 
16 states that customer can be allocated to a distri-
bution center and distribution center can be allocated 
to central depot only if there is a route connected to 
them. The binary variables are defined in Constraints 
17, 18, and 19. Finally, load and auxiliary variables tak-
ing positive values are declared in Constraints 20, 21, 
and 22.

4. SOLUTION APPROACH
The solution approach is presented in 3 steps. 

First, we present an approach for facing uncertainty; 
then we describe a method for solving the proposed 
optimization model for the network design problem; 
and, finally, we propose a Monte Carlo approach based 
approach for measuring TRCE.

v
mb  - Capacity v-th vehicle for product m 
mj  - Weight of each unit of product m
v
0~u  - Fuel consumption per distance unit for  

    unloaded vehicle v in a road without slope 
v
1~u  - Additional fuel consumption per distance unit  

    for vehicle v associated with load unit
v
2~u  - Quotient of fuel consumption per distance unit  

    for vehicle v associated with vehicle conditions
ijv
3~u - Quotient of fuel consumption per distance  

    unit for vehicle v associated with road  
    conditions (arc (i,j)!A) 

Decision variables:
Xij

vt  - 1 if vehicle v at time period t travels in arc  
    (i,j)!A, and 0 otherwise
Yij

t  - 1 if in time period t the demand of customer i  
    is satisfied by the distribution center placed in  
    node j, and 0 otherwise
Zj  - 1 if a distribution center open at candidate  
    location j, and 0 otherwise 
Lij

vtu  - Load of vehicle v traveling arc (i,j)!A at time  
    period t
Uiv

t  - Auxiliary variable for sub-tour elimination  
    constraints in vehicle v route 

'U iv
t  - Auxiliary variable for sub-tour elimination  

    constraints in vehicle v route
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and then the solution is selected with the proba-
bility of Pr from the selected front, as presented in 
Equation 25.

P NF NF
Rank

12
F

F=
+^ h  (24)

P NSF NSF
Rank

12
r

F
F

sF=
+^ h  (25)

where NF is the number of fronts, RankF is the rank of 
front F, NSFF is the number of solutions in front F, and 
RanksF is the rank of solution s in front F.
6)  If the end condition is satisfied, the solution ap-

proach is over, otherwise go back to step 3.
In the second phase, the best solution is identified 

by PROMETHEE-II from the best Pareto front obtained 
in the previous phase. The PROMETHEE was first de-
veloped by Brans and Vincke in 1985 [50]. PROMETH-
EE-I can provide a partial ranking, while PROMETHEE-II 
can drive total ranking of the solutions. Therefore, in 
this paper, we use PROMETHEE-II. The method we ap-
plied is exactly as it described in [51].     

4.2 Measuring TRCE

Measuring TRCE based on fuel consumption is 
not a straightforward processs. The amount of carbon 
emission depends on many factors such as the quality 
of fuel, vehicle conditions, weather conditions, the load 
of vehicle, etc. Therefore, in the mathematical formu-
lation based on fuel consumption for TRCE, the carbon 
emission quotient is a probabilistic parameter. Due to 
Equation 3, TRCE can be measured by Equation 26. 

TRCE
L Xv v

ij
vt v ijv

ij ij
vt

t Tv Vj Gi G
0 1 2 3} ~ ~ ~ ~ c

=
+ + +=

!!!!

t u u u u u_ i; E////  (26)

where }t  is a probabilistic parameter probability den-
sity function f(y) for the carbon emission quotient. 
The cumulative distribution function FY is defined as 
Equation 27. 

( )F f y dyY

y

=
3-

#  (27)

To calculate TRCE, we applied a Monte Carlo based 
approach. The suggested algorithm is as follows:     
1)  Estimate the probability density function for carbon 

emission quotient .}t^ h  
2)  Create a vector with B array for each probabilistic 

and fuzzy number in Equation 26 considering their 
probability density function or fuzzy membership 
function.

3)  Calculate TRCE vector by Equation 28.

In this paper, the centroid method is applied for the 
defuzzification of the trapezoidal fuzzy number. The 
centroid of the trapezoidal fuzzy number tu  is shown 
in Equation 23 [47].

( )C t t t t
t t t t t t t t

3t
3 4 1 2

3 4 3 4 1
2

1 2
2 2 2

2= +
+ +

- -
- - -

u   (23)

4.1 Solution algorithm 

To solve the proposed model, we developed a two-
phase algorithm based on non-dominated ranked ge-
netic algorithm for solving multi-objective optimization 
problems (NRGA) and preference ranking organization 
method for enrichment of evaluations (PROMETHEE). 
In the first phase, the Pareto front is generated by 
NRGA; in the second phase, the best solution is deter-
mined by the PROMETHEE-II method.

NRGA was developed by Al Jadaan et al. [48]. In this 
paper, we develop a modified version of the multi-ob-
jective NRGA called M-NRGA. In NRGA, a two-phase 
selection method is implemented. In the first phase, 
one of the fronts is selected by a fitness proportionate 
selection procedure (roulette wheel) based on its rank, 
and in the next phase one chromosome is selected 
from this front. Therefore, in NRGA the possibility of 
selecting a chromosome depends on its front’s rank 
[49]. In the proposed M-NRGA, to improve the quali-
ty of the solutions in the Pareto front, Pe percent of 
solutions are selected based on elitism from the elitist 
solutions in the first front. In addition, to increase the 
diversity of the solutions in the Pareto front, Pt percent 
of solutions are selected based on the tournament 
method. In the proposed M-NRGA, since Pe percent of 
solutions are selected based on elitism, it is possible 
to adjust the number of solutions in the Pareto front 
to be at least equal to a fixed number. The proposed 
M-NRGA, as described, is as follows:
1)  Initialize the first generation of solutions randomly 

with the population size N.
2)  Calculate both objective functions for all solutions.
3)  Sort and locate the solution based on the method 

presented in [48].
4)  Do the crossover operation for Pc and mutation for 

Pm presentation of population.
5)  Select N solution for the next generation. Three 

strategies are applied to select the solutions:
 a) Pe percent of solutions are selected based on 

elitism from the elitist solutions in the first front. 
 b) Pt percent of solutions are selected based on 

the tournament method. Two solutions are select-
ed randomly. The one that belongs to the front with 
the higher rank wins. If the solutions come from 
the same front, the one with the higher rank in the 
front wins.

 c) Pr percent of solutions are selected based on the 
roulette wheel method. At first, the front is selected 
with the probability of PF, as shown in Equation 24, 
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Iran with the population of 1.9 million [52]. There are 
29 customers and 5 candidate locations for distribu-
tion centers in Shiraz, Fasa Eqlid, Firuzabad, and Lar. 
The distances between network nodes are given in 
Table 1. In this supply network, 2,447 types of products 
are distributed. The demand for each product is esti-
mated based on recent 36-month demand. The total 
demand for all products in Fars is 2,405,281,094 an-
nually. We used Equation 23 to calculate the centroid 
of demands .Cdim

tu^ h  Some of the results are given in 
Table 2. Obviously, these 2,447 types of products in-
crease the problem complexity unnecessarily. In order 
to simplify the problem, we classified the pharmaceu-
tical substances into 47 major groups, as shown in 
Table 3.

Three different meta-heuristic algorithms, includ-
ing NSGA-II, MOPSO, and the proposed M-NRGA, are 
used to solve the proposed optimization model for 
the network design problem. NSGA-II is one of the 
most popular multi-objective evolutionary algorithms,  
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4)  Calculate average and variance of resulted vector. 
That would present the average and variance of 
TRCE.

5)  Draw the histogram of the transpose of re-
sulted vector. From the sampling frequency of 
[TRCE1,TRCE2,..., TRCEB], the probability density 
function of TRCE can be obtained.

5. CASE STUDY

5.1 Fars healthcare supply network

In this paper, Fars healthcare supply network is 
considered as the case study. Fars is one of the thir-
ty-one provinces of Iran and located in the south of the 
country. Fars has one of the richest cultural heritages 
in Iran, encompassing many disciplines such as liter-
ature, poetry, architecture, and stonemasonry, and it 
is known as the cultural capital of Iran. In 2015, this 
province had a population of 4.6 million people [52]. 
Due to the capabilities of Fars healthcare industry, 
such as a remarkable number of hospitals, reputa-
ble physicians, high quality healthcare services, mild 
weather, tourist attractions, and good hotels, many 
patients from all over Iran, the Persian Gulf countries, 
and even Europe travel to Shiraz to receive healthcare 
services.

We consider five years as the planning horizon 
for the Fars healthcare supply network divided into 
60 one-month periods. In the Fars healthcare supply 
network, as illustrated in Figure 4, the central depot is 
located in Shiraz. Shiraz is the capital city of the Fars 
province and the most populous city in the south of 

Figure 3 – Vectors for probabilistic and fuzzy numbers

Figure 4 – Fars healthcare supply network
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2)  For each solution: a) Select the G-best from the ar-
chive; b) Update velocity; c) Update position

3)  Update the archive of non-dominated solutions 
4)  Repeat [55]. 

In the presented case study, to measure TRCE, a 
vector with B=1,000,000 array for each probabilistic 
and fuzzy numbers based on their probability density 
function or fuzzy membership function is generated 
by MATLAB 2012a. Then the histogram and Kolmogor-
ov-Smirnov test is calculated to estimate the possibili-
ty distribution function of TRCE.     

5.2 Results

The presented problem is solved by NSGA-II, MOP-
SO, and M-NRGA. The input parameters of these algo-
rithms are given in Table 4. Four common measures 
are used to compare the algorithms. The most import-
ant index is the quality of solutions. This index cannot 
be measured for a Pareto front individually and must 
be calculated comparing to another Pareto front. As-
sume Pi is the Pareto front resulted by algorithm i, and 
Pj is the Pareto front resulted by algorithm j, then the 
quality index for algorithm i and j (Q(Pi, Pj)) can be cal-
culated by Equations 29 and 30. 

developed by Deb et al. based on the genetic algo-
rithm [53]. Like other evolutionary algorithms, in the 
first step NSGA-II generates random solutions with the 
population of μ. In addition, each solution is evaluat-
ed by fitness functions, and, based on this evaluation, 
Pareto fronts are created by non-domination sorting. 
In the next step, each solution receives a rank equal 
to the level of the front that it belongs to. Then the 
crowding distance between the solutions on each front 
is measured. The selection procedure is the binary 
tournament method. The winner is the solution with 
the higher rank, and if the ranks are equal, the winner 
is the one with the higher crowding distance. The rest 
of the NSGA-II procedure is exactly the same as the 
genetic algorithm [54].  Moore and Chapman were the 
first to present MOPSO [55]. The procedure of MOP-
SO is similar to PSO. The only difference is that since 
the problem is multi-objective, instead of determining 
global best solution (G-best), the Pareto front would be 
determined. So, an archive including all of non-domi-
nated solutions found in each iteration are stored. The 
steps of MOPSO are: 
1)  Initialize random solutions with the population of n 

and the archive of non-dominated solutions.

Table 3 – Products classification

Index Product class Index Product class Index Product class
1 Analgesic drugs 18 Blood products 34 Anesthetics
2 Anthelmintics 19 Bone modulating 35 Muscle relaxants
3 Antibacterials 20 Anti-asthma 36 Neuromuscular blockers
4 Antidepressants 21 Cardiovascular drugs 37 Parasympathomimetics
5 Anti-diabetics 22 Antidote and antagonists 38 Pesticides and repellents
6 Antiepileptics 23 Contrast media 39 Prostaglandins
7 Antifungals 24 Corticosteroids 40 Sex hormones
8 Antigout drugs 25 Cough suppressants 41 Suspending agents
9 Anti-histamines 26 Dermatological 42 Stimulants and anorectics

10 Antimalarials 27 Disinfectants 43 Thyroid drugs
11 Antimigraine drugs 28 Dopaminergics 44 Vaccines
12 Antimuscarinics 29 Electrolytes 45 Herbal drugs
13 Antineoplastics 30 Gastrointestinal drugs 46 Others
15 Antiprotozoals 31 Anesthetics 47 Nutritional agents
16 Antivirals 32 Hypothalamic and pituitary and vitamins
17 Sedatives & hypnotics 33 Immunosuppressants

Table 4 – The input parameters of NSGA-II, MOPSO and M-NRGA

NSGA-II
Number of population Maximum iteration Crossover rate Mutation%

100 100 0.65 5

MOPSO
Number of population Maximum iteration C1 C2 ~ Mutation%

100 100 1.9 2.1 0.8 5

M-NRGA
Number of population Maximum iteration Pe Pt Mutation%

100 100 Adjustable 5
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As presented in Table 5, the average of Q(MOP-
SO,NSGA-II) is higher than Q(NSGA-II,MOPSO), so, 
based on the quality index, the first assumption is 
that MOPSO performs better than NSGA-II. Similarly, 
based on the quality index, we can assume that M-NR-
GA performs better than both MOPSO and NSGA-II. 
Table 6 shows that, on average, NSGA-II has better per-
formance in CPU time. In addition, the average num-
ber of solutions in the Pareto front is higher in M-NR-
GA. The average diversity of the solutions in the Pareto 
front is higher in M-NRGA. It should be mentioned, 
since in the proposed M-NRGA Pe present of solutions 
are selected based on elitism from the elitist solutions 
in the first front, by adjusting Pe the number of solu-
tions in the Pareto front can be adjusted to be at least 
equal to a fix number. In this paper, we consider 30 as 
the minimum number of solutions in the Pareto front.

To ensure that the presented algorithm can solve 
the network design problem efficiently and in reason-
able time, statistical tests are implemented [57]. The 
confidence level of 99% is considered for all of the 
tests. The first test is if NSGA-II performs better than 
the proposed M-NRGA in each index, and the second 
one is if MOPSO performs better than M-NRGA in each 
index at the confidence level of 99%. As presented in 
Table 7, both MOPSO and NSGA-II have a better CPU 
time comparing to M-NRGA. However, in terms of the 

( , )C P P P
P P

Number of solutions in
Number of solutions in dominatedby solutions in

i j
j

j i=  (29)

( , ) ( , ) ( , )
( , )

Q P P C P P C P P
C P P

i j
i j j i

i j= +  (30)

Considering Equations 29 and 30, it is clear 
that Q(Pi, Pj)+Q(Pj, Pi)=1. For the quality index, if  
Q(Pi, Pj)>Q(Pj, Pi), then the Pareto front resulted by 
algorithm i is better than the Pareto front resulted by 
algorithm j [56].

The next index for evaluating the performance of 
a multi-objective algorithm is the diversity of the solu-
tions in the Pareto front (D(Pi)). The higher value of this 
index shows the better performance of the multi-ob-
jective algorithm. The diversity of solutions in a Pareto 
front is calculated as presented in Equation 31.

( ) ( )maxD P Z X Z X
,

i
k l

j k j l
z

j

1
= -

=
^ h" ,/  (31)

where Zj is the objective function j and Xk is the solu-
tion in Pareto front Pi [56]. Two other indexes are CPU 
time and the number of solutions in the Pareto front 
(NSPF). The higher number of solutions in the Pareto 
front is more preferable because it can give the de-
cision makers more options. We solve the presented 
case study 100 times. For the presented problem, 
Table 5 shows the quality index for presented algo-
rithms, and other indexes are presented in Table 6. 

Table 5 – Quality index for presented algorithms

Sample size Q(Pi,Pj)
Mean Standard deviation

NSGA-II MOPSO M-NRGA NSGA-II MOPSO M-NRGA
100 NSGA-II - 0.4877 0.3563 - 0.12 0.09
100 MOPSO 0.5123 - 0.3649 - 0.08
100 M-NRGA 0.6437 0.6351 - 0.21 0.18 -

Table 6 – The value of indexes for presented algorithms

Mean Standard deviation
Index Sample size NSGA-II MOPSO M-NRGA NSGA-II MOPSO M-NRGA
CPU Time [s] 100 7,439.34 8,643.21 8,941.62 632.71 501.51 781.42
NSPF 100 18.42 16.23 30 4.32 3.21 0

100 5,294,031.11 7,768,633.35 8,345,223.32 123,122.74 143,287.46 168,231.51

Table 7  – The statistical tests results for all hypotheses

H0 (null hypothesis) Test problem index P-value

NSGA-II performs better than M-NRGA

Quality index of the Pareto front 0.000
CPU time [s] 1.000
Number of solutions in the Pareto front 0.000
Diversity of the Pareto front 0.000

MOPSO performs better than M-NRGA

Quality index of the Pareto front 0.000
CPU time [s] 0.342
Number of solutions in the Pareto front 0.000
Diversity of the Pareto front 0.000
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Based on Equations 29 and 30, Q(M-NRGA,NS-
GA-II)=1 and Q(M-NRGA,MOPSO)=0.966. So, accord-
ing to these indexes, M-NRGA performs better than the 
other two algorithms. However, in the CPU time index, 
NSGA-II preforms better.

To find the best solution in the Pareto front resulted 
from M-NRGA, as presented in the solution algorithm, 
PROMETHEE-II was applied. The best solution is also 
shown in Figure 7. For this solution, Objective function 
2 – minimizing total cost – is: 1,237,447.6 $, and Ob-
jective function 3 – minimizing fuel consumption – is: 
13,233,837.6 liters.

quality index of the Pareto front, number of solutions in 
the Pareto front, and Pareto front diversity, the perfor-
mance of M-NRGA is better.

As mentioned before, the most important index 
for evaluating Pareto fronts is the quality index. The 
best Pareto fronts for the Fars healthcare supply net-
work design problem, based on this index, are illus-
trated in Figure 5 and Table 8. As presented in Table 8, 
according to Equation 18, the diversity of the solutions 
in the Pareto front resulted from M-NRGA amounts to 
9,235,474.32, from MOPSO to 8,868,654.35, and 
from NSGA-II to 6,119,401.00.
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Figure 5 – The best Pareto fronts for the Fars healthcare supply network design problem, based on quality index

Table 8  – Best Pareto front for the presented problem based on quality index

Algorithm Z1 Z2 CPU time [s] NSPF D(Pi)

M-NRGA 1,079,481.97 10,217,546.41 8,746.21 30 9,235,474.32

MOPSO 1,079,562.97 10,894,725 8,668.34 19 8,868,573.35

NSGA-II 1,107,998 12,094,725 7,365.41 22 6,119,401.00

Table 9  – Descriptive statistics of TRCE

Statistic Std. error

TRCE

Mean 32,007,127,597.94434 8,261,135.309457544

95% confidence 
Interval for mean

Lower bound 31,990,936,055.797
Upper bound 32,023,319,140.09168

5% Trimmed mean 32,005,466,357.367813
Median 31,998,456,877.6218
Variance 6.8246288E+19

Std. deviation 8,261,131,178.888857
Minimum -9,849,490,945.33062
Maximum 7.33051201511E+10
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6. CONCLUSION AND FUTURE STUDY
In recent history, global warming has been one of 

the most important challenges for humanity. Under-
standing carbon footprint is vital in overcoming this 
challenge. In this paper, we provided a computational  
method for measuring TRCE in a healthcare supply 
network. In the first step, a mathematical model for de-
signing a proper supply network under uncertainty was 
developed. To solve this model, we proposed a two-
phase algorithm based on NRGA and the PROMETH-
EE-II method. The statistical tests showed that the pro-
posed algorithm has better performance in solving the 
model in comparison to NSGA-II and MOPSO. In the 
proposed algorithm, the number of solutions in the Pa-
reto front can be adjusted to be at least equal to a fixed 
number. This can provide more possibilities for deci-
sion-makers to obtain optimal solutions in real-world 
problems. In the next step, a computational method 
based on Monte Carlo was developed for measuring 
TRCE. The proposed approach was applied to the Fars 
healthcare supply network. After solving the model, the 
total cost is $1,237,447.6, and the fuel consumption 
is 13,233,837.6 liters in the planning time horizon. 
The probability distribution function of TRCE is normal 
with the mean of 32,007,127,597.94 grams and vari-
ance of 6.8246E+19. The obtained results confirm 
the efficiency of the proposed approach as a practical 
tool for measuring TRCE. In this research, time win-
dows for product delivery to distribution centers and  

TRCE vector is calculated by Equation 27. A vec-
tor with B=1,000,000 arrays for each probabilistic 
and fuzzy number based on their probability density 
function or fuzzy membership function is generat-
ed by MATLAB 2012a for measuring TRCE. Table 9 
shows the descriptive statistics of TRCE in the Fars 
healthcare supply network. The average of TRCE is: 
32,007,127,597.94 grams, and the standard devia-
tion of TRCE is: 8,261,131,178.88.

The histogram of TRCE is illustrated in Figure 6. Ac-
cording to this histogram, we expect that the proba-
bility distribution function of TRCE would be normal. 
The Kolmogorov-Smirnov test is applied to test the 
normality of TRCE. Figure 7 presents the normal Q-Q 
plot of TRCE. It proves that the probability distribution 
function of TRCE is normal.
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Figure 6 – Histogram of TRCE for Fars healthcare supply 
network
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Figure 7 – Normal Q-Q plot of TRCE for Fars healthcare supply network



Nasrollahi M, Razmi J, Ghodsi R. A Computational Method for Measuring Transport Related Carbon Emissions in a Healthcare Supply...

706 Promet – Traffic & Transportation, Vol. 30, 2018, No. 6, 693-708

[5] Reddy PP. Causes of Climate Change. In: Climate  
Resilient Agriculture for Ensuring Food Security. 1st ed. 
Springer; 2015. p. 17-26.

[6] Meinshausen M, Meinshausen N, Hare W, Raper SCB, 
Frieler K, Knutti R, et al. Greenhouse-gas emission 
targets for limiting global warming to 2°C. Nature. 
2009;458(7242): 1158-1162. Available from: http://
dx.doi.org/10.1038/nature08017

[7] Plambeck EL. Reducing greenhouse gas emissions 
through operations and supply chain management. En-
ergy Economics. 2012;34(Suppl.1): 564-574. Available 
from: http://dx.doi.org/10.1016/j.eneco.2012.08.031

[8] IPCC. Mitigation of climate change: Contribution of 
working group III to the fourth assessment report of 
the Intergovernmental Panel on Climate Change. Inter-
governmental Panel on Climate Change; 2007. 851 p. 

[9] Mula J, Peidro D, Poler R. The effectiveness of a fuzzy 
mathematical programming approach for supply chain 
production planning with fuzzy demand. Internation-
al Journal of Production Economics. 2010;128(1): 
136-143. Available from: http://dx.doi.org/10.1016/ 
j.ijpe.2010.06.007

[10] Selim H, Ozkarahan I. A supply chain distribution net-
work design model: An interactive fuzzy goal program-
ming-based solution approach. International Journal 
of Advanced Manufacturing Technology. 2008;36(3-
4): 401-418. Available from:  https://doi.org/10.1007/
s00170-006-0842-6

[11] Acquaye A, Genovese A, Barrett J, Koh SCL. Benchmark-
ing carbon emissions performance in supply chains. 
Supply Chain Management: An International Journal. 
2014;19(3): 306-321. Available from: http://www.em-
eraldinsight.com/10.1108/SCM-11-2013-0419

[12] O’Shea SJ, Allen G, Fleming ZL, Bauguitte SJ-B, Per-
cival CJ, Gallagher MW, et al. Area fluxes of carbon 
dioxide, methane, and carbon monoxide derived from 
airborne measurements around Greater London: A 
case study during summer 2012. Journal of Geophys-
ical Research: Atmospheres. 2014;119(8): 4940-
4952. Available from: http://doi.wiley.com/10.1002/
2013JD021269

[13] Benjaafar S, Li Y, Daskin M. Carbon Footprint and the 
Management of Supply Chains: Insights From Simple 
Models. IEEE Transactions on Automation Science 
and Engineering. 2012;10(1): 99-116. Available from: 
https://ieeexplore.ieee.org/document/6248180 

[14] Carling K, Han M, Håkansson J, Meng X, Rudholm N. 
Measuring transport related CO 2 emissions induced 
by online and brick-and-mortar retailing. Transporta-
tion Research Part D. 2015;40: 28-42. Available from: 
http://dx.doi.org/10.1016/j.trd.2015.07.010

[15] Minx JC, Wiedmann T, Wood R, Peters GP, Lenzen M, 
Owen A, et al. Input–output analysis and carbon foot-
printing: an overview of applications. Economic Sys-
tems Research. 2009;21(3): 187-216. Available from: 
https://doi.org/10.1080/09535310903541298

[16] Jaegler A, Burlat P. Carbon friendly supply chains: a sim-
ulation study of different scenarios. Production Plan-
ning & Control. 2012;23(4): 269-278. Available from: 
https://doi.org/10.1080/09537287.2011.627656

[17] Tian Y, Liu Q. The Study about the Calculation Method 
of Product Carbon Footprint during the Flow Manu-
facturing Process. Journal of Low Carbon Econo-
my. 2014;3: 1-6. Available from: http://dx.doi.org/ 

customers are not considered. Due to the importance 
of time windows in pharmaceutical substance delivery, 
further study is still required on this topic. 
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