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ABSTRACT

Safety systems detect unsafe conditions and provide 
warnings for travellers to take action and avoid crashes. Es-
timation of the geographical location of a moving vehicle as 
to where it will be positioned next with high precision and 
short computation time is crucial for identifying dangers. To 
this end, navigational and dynamic data of a vehicle are pro-
cessed in connection with the data received from neighbour-
ing vehicles and infrastructure in the same vicinity. In this 
study, a vehicular location prediction model was developed 
using an artificial neural network for cooperative active safe-
ty systems. The model is intended to have a constant, short-
er computation time as well as higher accuracy features. 
The performance of the proposed model was measured with 
a real-time testbed developed in this study. The results are 
compared with the performance of similar studies and the 
proposed model is shown to deliver a better performance 
than other models.
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1. INTRODUCTION
Road transportation has an indispensable role in 

human life despite all the hitches in economic, en-
vironmental and social aspects. Thus, multi-dimen-
sional research and development studies have been 
carried out for safer and more effective road transpor-
tation. Developments in information and communica-
tion technologies have been rapidly deployed in road 
transportations in the last decade.

The main principle of safety applications is that 
moving vehicles recognize possible dangers and elim-
inate them. Inter Vehicle Communication (IVC) is one 
of the approaches that makes the road transporta-
tion safer, more efficient and more comfortable via  

wireless technology. In this approach, vehicles ex-
change their information such as dynamic and nav-
igational values between each other and road infra-
structures. Therefore, IVC makes possible cooperative 
active safety systems (CASS), which provide more ef-
fective safety through cooperation among vehicles and 
infrastructures.

Not only are data received from the vehicles and 
the infrastructures in the surrounding area, but also 
the dynamic and navigational values fetched from the 
vehicles are processed to recognize the possible dan-
gers.

Real-time estimation of the future geographical po-
sition of a vehicle in motion is called vehicular location 
prediction (VLP). It is also referred to by such terms as 
state estimation, mobility prediction, path prediction, 
and vehicle tracking. High precision and short compu-
tation times are essential components of VLP models. 
A perusal of literature shows that state-space equa-
tions are commonly used for prediction questions. The 
matrix algebra used in these equations affects the 
computation time adversely. In particular, the com-
putation time increases gradually as prediction time 
interval increases. The VLP methods with long com-
putation times are not convenient. Moreover, the VLP 
methods with inconstant computation times are much 
more likely to cause desynchronization between vehi-
cles or devices. 

This study focuses on how to conduct VLP with 
constant, short computation times as well as high 
accuracy on the highways and the rural roads for 
CASS. For this purpose, artificial intelligence-based 
solutions are preferred over state-space-based mod-
els. Artificial Neural Network (ANN), which becomes 
prominent in predicting techniques through artificial 
intelligence methods, was selected. The development 
and performance tests were conducted in real world  
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The information on geographical position, dynamic 
status and environmental conditions are needed for 
VLP.

The key elements in the performance of the VLP 
are high precision and short computation time. The 
quality of the sensors and devices as well as the pre-
diction method are vital to achieve these values. This 
equipment needs to be able to make measurements 
with both minimum error rate and maximum frequency 
at high speed. High processing power and high mem-
ory capacity are needed for parsing, processing and 
transmitting a large volume of fetched data.

The computation time as well as the prediction per-
formance of the used method is essential considering 
today’s range of WLAN technologies and vehicle speed. 
Longer computation times may affect the purpose of 
safety application adversely. Kalman Filter (KF) is gen-
erally used for the solution of estimation problems [7, 
8, 9]. However, state-space solutions such as KF have 
high computation complexity. Furthermore, computa-
tion time also increases in estimations based on the 
time in state-space solutions as the estimation time 
horizon increases [10].

The studies on VLP can be categorized as deter-
ministic and stochastic approaches. The parameters, 
considered in the deterministic method, have an im-
portant role in determining the prediction method. Ve-
hicles have particular characteristics such as weight, 
balance, aerodynamic. The method in which these 
distinctive features of vehicles are taken into consid-
eration is called parametric VLP. The method in which 
these distinctive features of vehicles are not taken into 
account and which are used in every vehicle is called 
non-parametric VLP [11].

The data used in non-parametric methods are 
limited to the geographical position, velocity, and the 
curve of the road. The characteristics of the vehicle 
are ignored. In this way, the method can be used in all 
vehicles regardless of the brand and the model of the 
vehicle or without any specific change on the vehicle. 
However, road level accuracy is figured out via this ap-
proach. Hence, these approaches are unsuitable for 
most of the safety applications, which require the line 
level accuracy [12]. 

VLP can be carried out with a movement model de-
veloped for vehicle dynamics [13]. Vehicle dynamics in-
volves many parameters, such as geometric structure 
and tire dynamics. Complex parametric VLP models 
can be designed as two-state systems or multi-state 
systems depending on the application developed. The 
modelling of the vehicle in motion can be designed by 
a few equations like continuous-time, discrete-time or 
non-linear equality [12].

Both uncertainties in the vehicle traffic and the 
noise occurring in sensor measurements show that 
deterministic methods will not be able to succeed 
alone. The common method used in stochastic VLP 

environment. A testbed equipped with a Global Naviga-
tion Satellite System (GNSS), an Inertial Measurement 
Unit (IMU) and multithreading software was developed.

The remainder of this paper is organized as follows. 
In the second Section of the study, VLP and the studies 
in this field are cited. In the third Section, the proposed 
model and developing procedures are described. In 
the fourth Section, the results of the real-time appli-
cations and comparisons of the similar studies are ex-
plained. The last Section includes the conclusion.

2. VEHICULAR LOCATION PREDICTION
IVC is one of the research areas of Intelligent 

Transportation System (ITS). IVC approach and related 
studies began in the early 1980s [1]. Thanks to the 
reduction in the cost of both GNSS receivers and wire-
less local area networks (WLAN), the studies on IVC 
became widespread towards the end of the 1990s. 
These studies aimed to provide a safer travel and an 
efficient transportation for goods and passengers and 
to minimize the adverse effects of the transportation 
on the environment.

The reflection of wireless technologies in IVC field 
is called Vehicular Ad-Hoc Networks (VANETs). Vehi-
cle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 
communication types are used together or separate-
ly in VANETs. The communication in V2V is provided 
by devices called On-board Units (OBUs). The vehi-
cle communicates with the devices set on roadsides 
called Roadside Units (RSUs) in V2I. V2I is also known 
as vehicle to roadside communication (V2R) [2, 3].

Multi-faceted studies have been carried out to im-
prove the adverse situations in road transport, espe-
cially collisions. The studies on road safety are cate-
gorized under two headings; passive and active safety 
systems. The passive safety systems are designed to 
prevent people from being injured in collisions, where-
as the active systems aim to avoid collisions [4].

The active safety systems can be categorized un-
der two headings, namely autonomous systems and 
CASS. Autonomous systems collect and analyse the 
data of the vehicles received from the surrounding 
area by means of sensors. Autonomous systems ac-
tivate the processes which eliminate dangers in case 
of emergency. CASS has highlighted the communica-
tion between the vehicles. CASSs collect data through 
the sensors just like in autonomous systems and they 
collect data from other vehicles and infrastructure de-
vices in the surrounding area. CASS aims not only to 
eliminate dangers but also to provide effective trans-
portation [5, 6].

The main objectives of IVC safety applications are 
detecting the possibility of a collision using essential 
information and warnings and interfering. Estima-
tion of geographical position in the future is a crucial  
challenge for predicting the possibility of a collision. 
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better compared to KF-based prediction. The last three 
studies did not consider computation time. However, 
Caveney achieved more accurate location predictions 
with lower computation time using a numerical inte-
gration method [24]. 

There is a limited number of studies on VLP. On 
the other hand, many methods have been developed 
as an alternative or supportive to the KF in the target 
tracking systems. An important part of these alterna-
tives is based on artificial intelligent methods such as 
ANN, genetic algorithm and fuzzy logic [25-27]. In par-
ticular, the applicability of ANN on non-linear systems 
is put forward ANN over KF [28].

3. PROPOSED VLP MODEL
An ANN-based model was chosen to achieve the 

goal of this study. A real time testbed was developed 
to conduct the development and testing procedures of 
the model. Many field studies and experiments were 
conducted to determine the most suitable ANN model.

3.1 Testbed

A testbed depicted in Figure 1 was developed, both 
to get datasets necessary for training the ANN model 
and to test the real-time performance of the model. 
The testbed, designed as an OBU, consists of nine par-
allel processes. These are: Reading geographical po-
sition, Reading vehicle dynamics, Prediction on UTM 
X, Prediction on UTM Y, Collision monitoring, Multicast 
transmitting, Multicast receiving, Logging on file, and 
Informing over digital map.

is Kalman Prediction. Kalman prediction is one of the 
three levels of KF, proposed by Rudolph E. Kalman 
[14]. Kalman prediction can be applied to the linear 
systems and the linearized non-linear systems.

Chiu-Feng et al. [15] developed algorithms for 
VLP by means of numerically integrating a linearized 
2-DOF model. The authors developed steady-state KF 
to predict the vehicle’s lateral velocity and the mag-
nitudes of external disturbance acting on the vehicle. 
Hang and Tan [16, 17] developed four different meth-
ods for VLP by using Kalman prediction. A lot of matrix 
computation is required at both discretizations of the 
continuous-time and prediction in Kalman Prediction. 
These computations need a large amount of computer 
resources [18]. 

Barrio et al. [19] proposed an interacting-multi-
ple-model that provided the predicted future location 
of the vehicle up to 3 s ahead of time. The model is 
based on four possible states of a vehicle: constant 
location, constant velocity, constant acceleration, and 
constant jerk. Feng et al. [20] proposed a location pre-
diction model applying KF for linear movement. The 
authors claimed that their model is superior to ANN. 
Nevertheless, they used three different datasets sam-
pled not only without vehicle dynamics, but also at low 
frequency. Moreover, the aimed environment, rural or 
urban, was not mentioned. Jaiswal and Jaidhar [21] 
proposed a location prediction algorithm using extend-
ed KF for a non-linear vehicular movement. They used 
GNSS traces without vehicle dynamics retrieved hap-
hazardly from OpenStreetMap [22] and VANETMOBI-
SIM [23]. They claimed that their algorithm performed 
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Figure 1 – The block diagram of the testbed
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3.2 Development of the proposed model

Initially, ANN should be trained to solve a problem. 
A dataset consisting of samples related to how an ANN 
reacts to which situations is necessary for training the 
process. The dataset was collected by conducting re-
al-time field applications. 

3.2.1 Collection of data for training 

The datasets are necessary for determining the de-
sired ANN model and for its training. The information 
in geographical position (UTM X, UTM Y, and altitude), 
acceleration in three axes (acceleration X, accelera-
tion Y, acceleration Z), orientation in three axes (yaw, 
pitch, and roll), velocity (horizontal velocity, vertical 
velocity) and direction (magnetic north angle) was 
collected from the vehicle in motion during the field 
applications. 

The study covers rural roads and highways. There-
fore, the field studies were conducted on a highway. 
The field applications were performed in various time 
periods, directions and velocities on the highway be-
tween Ovacık Neighbourhood and Kizilca Village in An-
kara. There were 73,909 lines of raw data collected on 
the highway segment about 48 km long. Each line was 
stored in a CSV file format as shown below. 
$timestamp, UTM X, UTM Y, altitude, acceleration X, 
acceleration Y, acceleration Z, yaw, pitch, roll, horizon-
tal velocity, direction, vertical velocity

3.2.2 Training of ANN

Several experiments were performed to identify 
the aimed ANN model most accurately with the lowest 
computation time. It was the objective of the study to 
determine the learning method, activation function, 
and the number of layers as well as input-output data 
types and formats of the ANN model used in the exper-
iments. Each experiment consisted of four sequential 
processes. These processes were the preparation of 
the dataset, determination of the ANN structure, train-
ing of the ANN and evaluation of the results.

Novatel FLEXG2-V2-L1 GNSS receiver, which has 
40 cm accuracy and 20 Hz frequency, is used to 
measure geographical position, direction and veloci-
ty values. Sparkfun LISY300AL gyroscope, which has 
a scale of ±300°/s and 88 Hz frequency, is used to 
measure the orientation of vehicle on 3 axes. Spark-
fun MMA7260Q accelerometer, which has 1.5 g sen-
sitivity and 350 Hz frequency, is used to measure the 
acceleration of vehicle on 3 axes. Both the gyroscope 
and the accelerometer are integrated into Sparkfun 
atomic DoF IMU. 

Multicast data transmission is preferred for V2V 
communication. Each vehicle is intended to transmit 
and receive data packets consisting of the current 
geographical position, velocity, direction, and predict-
ed geographical position of the vehicle in the future. 
Because there was not any hardware supported IEEE 
802.11p standard developed for VANETs on the mar-
ket, AirLive X.USB-3 WLAN adapters supported by IEEE 
802.11a are used with an 8-bdi omnidirectional anten-
na. The reason for preferring IEEE 802.11a is that it is 
very similar to IEEE 802.11p standard [29, 30].

An offline digital map was developed to monitor the 
position and movements of the vehicles in the VANET 
in real time. The position, velocity, and direction of the 
vehicles are shown to the driver on the map in real 
time (Figure 2). Also, the data collected from the mea-
suring instruments and VANET are logged to the filing 
system at a 50 Hz frequency rate.

A microprocessor system is available in the cen-
tre of the testbed to run the software operating in 
coordination with the components and the processes 
mentioned above (Figure 1). A laptop PC with Intel i5 
processor, 4 GB memory was used as the micropro-
cessor system. The system software running the test-
bed was developed using Java programming language 
with object-oriented programming methods as multi-
thread. The testbed was set up on vehicles and the 
performance of the testbed was tested in a real-world 
environment.

Figure 2 – The navigation of two vehicles in motion is monitored on a digital map of the testbed in different zoom levels
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output of the suggested ANN model. The subtraction 
of the values in UTMX and UTMY axes of the geograph-
ical position of vehicles between t and t+n moments 
was computed for the measurement of the covered 
distance. These distances were used as the output 
values of ANNs. 

We searched for the suitable data types and their 
format to get the expected output in the experiments. 
The datasets were prepared using various normaliza-
tions and filtering methods in different data types in 
the inputs and outputs of the ANN. The training data-
set consisted of 10,000 lines selected from the col-
lected data randomly.

A utility software was developed for a success-
ful and quick execution of the processes using Java 
programming language (Figure 3). A MATLAB Neural 
Network Toolbox was used in the infrastructure of the 
utility. The training functions coded in MATLAB envi-
ronment were embedded into the utility by converting 
Java class in MATLAB Builder JA.

A supervised learning method was used in the in-
tended ANN model. The ANN needs to be trained us-
ing a dataset consisting of the right input and output 
values to achieve the expected results. The aim was 
to predict the distance which the vehicle covers in the 
horizontal plane during a specific time interval as an 

Figure 3 – Data processing interface of the utility software used in ANN experiments
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Figure 4 – Analyses of the ANN, which predicts in 3 seconds time horizon on UTM-Y axis
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accurate results than using a single ANN with two 
outputs for UTM-X and UTM-Y. Therefore, a pair of 
ANN running in synchronization with each other were 
used in the prediction model with the ANN developed 
(Figure 5). The ANN pairs are created for the prediction 
of the time interval in which the distance will be cov-
ered by the vehicle.

The data collected in the field studies indicate that 
there was a proportional correlation between the dis-
tance previously covered and the distance to be cov-
ered afterwards by the vehicle at UTM-X or UTM-Y. The 
data of navigation performed at 67 km/h were anal-
ysed. The distance covered in the last one second and 
the distance to be covered in the next five seconds by 
the vehicle at any moment were normalized with re-
gard to the speed. It is observed that the rates of the 

Many combinations were tried to determine the 
network type, the learning method, the activation func-
tion, the number of layers and the number of neurons 
of the ANN model. ANN models which have different 
structures were trained using the prepared training 
datasets. Shown in Figure 4 is the training performance 
of an ANN which predicts in 3-second time intervals on 
UTM Y axis. The regression graph between prediction 
results of the same ANN and actual values on each of 
the three datasets are presented in Figure 4. 

3.3 The proposed ANN-based VLP Model

At least two values are needed to predict the geo-
graphical position of the vehicle in the future as an 
output of the ANN model. The experiments showed 
that using two ANNs with a single output yields more 
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ANN pairs were converted into a Java class and em-
bedded into the testbed using a MATLAB Builder JA 
tool.

4. PERFORMANCE EVALUATION OF THE 
PROPOSED MODEL
Real-time field studies were carried out to deter-

mine the performance of the developed ANN-based 
VLP model. In terms of accuracy and computation 
time, the performance of the model was construed 
according to the obtained measurements. The perfor-
mance values were compared to similar studies. 

4.1 Field studies

Five ANN pairs were trained according to the pro-
posed model for prediction at each second in the fu-
ture between 1 s and 5 s. The trained ANN pairs were 
converted into Java class by MATLAB Builder JA to build 
in the testbed. Thus, the target system for the testbed 
was made ready for both hardware and software by 
applying the ANN model. Field studies were carried 
out to test the performance on the highway between 
Yeni Bayindir Village and Kurucay Village in Ankara 
(Figure 7a). The highway segment was out of scenes 
used in the previous field studies to create the training 
datasets. In the first part of the studies, the testbed 
was examined with all the functions and in the second 
part of the studies, the performance of the ANN model 
was measured.

Two vehicles were equipped with the testing devic-
es developed for the field studies (Figure 7b). All the 
parallel processes of the testbed, especially ones re-
lated to VLP, were examined with vehicles in motion in 
real time on the highway. The parallel processes were 
found to perform uninterruptedly and seamlessly on 
both vehicles as a result of the first study. The posi-
tions of both vehicles were monitored on the digital 
map (Figure 2).

Two vehicles toured across the highway segment 
three times for measuring performance of the ANN 
model. They performed at different average veloci-
ties at 45 km/h, 55 km/h and 67 km/h each time. 
The vehicles covered a distance of 30 km in total. The 
navigational data and predicted values of the five ANN 
pairs were recorded to evaluate the performance. In 

normalized values ranged between 0.90 and 1.10 in 
96% of all the values. Consequently, it is concluded 
that normalized covered distance value in the last one 
second on UTM axis needed to be one of the input val-
ues of the ANN. In addition to that, a filter which trims 
the ratio of the previously measured distance to the 
predicted values within the range of 0.90 and 1.10 
was added to the end of the ANN.

Other data inputs of the ANN pair are common. 
These common input data consist of accelerations, 
yaw, horizontal speed and vehicle direction, all of 
which describe the motion of the vehicle in two-dimen-
sional horizontal plane. In addition, the roll data, one 
of the vehicle’s three-dimensional motion data, are 
also chosen as input of the ANNs, where the slant con-
structions of the roads on the curves are taken into 
consideration.

Mean, normalization and filtering processes were 
applied to raw input and output values. The accelera-
tion, yaw and roll data received from IMU were not used 
directly due to the shock sensitivity and high frequen-
cy measurement attributes of the IMU. Instantaneous 
values were received from IMU with 50 Hz frequency. 
The arithmetic mean of the values in the last one sec-
ond was determined as the input values of the ANNs. 
This approach affected the performance of the ANN 
positively. The minimum and maximum values of each 
data type used as input or output value of the ANNs 
were determined according to the current conditions 
of the vehicle. They were normalized in the range of [0, 
1]. The instances with values out of the range calculat-
ed as a result of the normalization procedure were not 
included in the training dataset. The input and output 
training datasets were created by means of a random 
selection of the remaining instances.

As a result of the experiments, the ANN type of 
feed-forward back-propagation neural network was 
found to give the best results. Levenberg-Marquardt 
algorithm (LM) [31], one of the second-order algo-
rithms, was selected as the learning method. These al-
gorithms have a significantly high training speed [32]. 
The LM algorithm has fast and stable convergence on 
networks which contain up to a few hundred weights 
[33]. LM offers increased efficiency especially when 
high precision is required [31]. The log-sigmoid in the 
hidden layer and the tangent sigmoid in the output  
layer gave the best results (Figure 6). The developed 
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Figure 6 – The structure of the ANN used for prediction on single axis
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danger occurs, the horizon time is commonly deter-
mined between one and five seconds in various safety 
applications [35].

Position-accuracy of the proposed ANN model is 
determined by Equation 1 at specific velocity for a spe-
cific horizon time.

A A Ap x y
2 2= +  (1)

A n x x1
x i i

i

n

1
= -

=

V/  (2)

A n y y1
y i i

i

n

1
= -

=

V/  (3)

where n represents the number of sample; x iV is the 
predicted position, and xi is the measured location on 
UTM-X axis; y i

V  is the predicted position and yi is the 
real position on UTM-Y axis for the same time; Ax and 
Ay are RMS of the errors on both UTM axes. Ap is the 
calculated position accuracy of the proposed model. 

Position-accuracy of the proposed ANN model was 
calculated by using the logged data during the last 
field study at three different velocities for the five hori-
zon times (Table 2). 

The RMS values of position-accuracy of KF, UT-NI 
and proposed ANN methods are compared in Table 3.

order to make a comparison, the velocity values and 
route values were chosen similar to the ones used in 
the studies in literature.

4.2 Performance and comparisons

Similar studies in literature were surveyed for per-
formance measurement of the proposed VLP model. 
The experiments carried out by Caveney [34] were con-
cluded to be the most appropriate studies for compar-
ison. He claimed that KF method commonly used in 
prediction studies has a shorter computation time and 
also lower accuracy. In addition, he suggested the Un-
scented Transform with Numerical Integration (UT-NI) 
method for location prediction with low computation 
time and high accuracy.

He further claimed that computation time decreas-
es significantly owing to low memory requirement of 
UT-NI method. Moreover, it is stated that Route Mean 
Square (RMS) of prediction accuracy is lower with this 
method. He carried out VLP with the two methods in 
the field studies and compared the results (Table 1). 

The needed time horizon for location prediction is 
ranked according to many factors, such as type of the 
safety application, vehicle speed and environmental 
factors. Although there is no certain view related to 
what the time horizon is in which conditions before the 

Table 1 – Position-accuracy comparison for the Kalman prediction and UT-NI approaches for various average vehicle 
speeds [34]

Approach Speed
[km/h]

Prediction horizon [m]
1 s 2 s 3 s 4 s 5 s

Kalman
45 0.26 1.27 3.45 6.94 11.7
55 0.56 2.07 5.26 10.4 17.4
67 0.72 2.41 6.01 12.1 20.8

UT-NI
45 0.30 0.67 1.74 3.60 5.86
55 0.32 1.13 3.07 6.08 8.46
67 0.47 1.57 4.51 8.04 9.92

a) b)

B

Figure 7 – a) The route used in field studies for performance tests, b) The equipped vehicles used in filed studies
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of 3 seconds and above with the proposed ANN meth-
od in comparison with other methods. The accuracy 
of the proposed ANN method was lower at 1-second 
and 2-second time horizons than the accuracy of other 
methods. The failure of the proposed method in the 
shorter time horizon predictions can be neglected be-
cause the difference between the compared values 
was low and the scope of the study covered highway 
and rural ways transportation only.

Table 4 presents the computation times of the 
methods for horizon times from 1 s to 5 s at 55 km/h. 
The computation time of a VLP method must be con-
stant and short for the CASS safety applications. A 
deficiency of these features can lead to catastrophic 
results. Variable computation time is much more likely 
to cause desynchronization between the components 
of the systems. On the other hand, higher computation 
time can cause failure to detect dangers in time. 

The computation times of both KF and UT-NI meth-
ods increase gradually as horizon time increases. 
Thus, their scores are higher and variable. The values 
were computed by MATLAB R2006 installed on a ma-
chine with a 2.13 GHz CPU, 2 GB memory and 2 MB 
cache [24]. The computation time of the proposed 
ANN model did not change with the prediction hori-
zon. Moreover, the computation time of the proposed 
model was found to be lower than that of others. The 
scores of the proposed model were computed by MAT-
LAB R2011a installed on a machine with a 2.5 GHz 
CPU, 4 GB memory and 3 MB cache.

Table 3 shows that the error rates of the predictions 
increase as the time horizon or speed increase in each 
of the three methods. The increase in the error rate in 
the predictions where the ANN model was used was 
lower than that of the others when the error rates in 
connection with the time horizon and the speed in 
all of the three methods were compared. In addition, 
more successful results were obtained in time horizons  

Table 2 – Position-accuracy for the Proposed ANN Model 
for various average vehicle speeds

Time
[s]

Speed
[km/h]

Ax
[m]

Ay 
[m]

Ap 
[m]

1
45 0.4488 0.4729 0.6520
55 0.4964 0.5118 0.7130
67 0.5395 0.5790 0.7914

2
45 0.7469 0.7548 1.0619
55 0.8423 0.8105 1.1689
67 0.9424 0.8983 1.3020

3
45 1.1129 1.1295 1.5857
55 1.2215 1.2153 1.7231
67 1.3569 1.2826 1.8671

4
45 1.4347 1.4738 2.0568
55 1.6031 1.5526 2.2317
67 1.7483 1.6682 2.4165

5
45 1.9070 2.0151 2.7744
55 2.1870 2.0908 3.0256
67 2.4011 2.2093 3.2629

Table 3 – Position-accuracy comparison of the Kalman prediction, UT-NI and Proposed ANN Model approaches for various 
average vehicle speeds

Approach Speed
[km/h]

Prediction horizon [m]
1 s 2 s 3 s 4 s 5 s

Kalman prediction [34]
45 0.26 1.27 3.45 6.94 11.7
55 0.56 2.07 5.26 10.4 17.4
67 0.72 2.41 6.01 12.1 20.8

UT-NI [34]
45 0.30 0.67 1.74 3.60 5.86
55 0.32 1.13 3.07 6.08 8.46
67 0.47 1.57 4.51 8.04 9.92

Proposed ANN Model
45 0.6520 1.0619 1.5857 2.0568 2.7744
55 0.7130 1.1689 1.7231 2.2317 3.0256
67 0.7914 1.3020 1.1876 2.4165 3.2629

Table 4 – Computation time comparison for the Kalman prediction, UT-NI and Proposed ANN Model approaches at 55 
km/h average vehicle speeds

Approach Speed
[km/h]

Computation time [ms]
1 s 2 s 3 s 4 s 5 s

Kalman filter [24] 55 9.7 18.5 27.5 36.4 45.0
UT-NI [24] 55 23.1 36.9 49.1 63.8 87.7
Proposed ANN Model 55 3.2 3.2 3.2 3.2 3.2
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İŞBİRLİKÇİ ETKİN GÜVENLİK SİSTEMLERİ İÇİN SİNİR 
AĞI TABANLI TAŞIT KONUMU KESTİRİM MODELİ

ÖZET

Güvenlik sistemleri, tehlike durumlarını tespit ederler ve 
yolcuları önlem almaları ve çarpışmadan kaçınmaları için 
uyarırlar. Tehlikelerin tespiti için seyir halindeki taşıtın gelece-
kteki coğrafi konumunun yüksek hassasiyet ve düşük hesap 
zamanı ile tahmini çok önemlidir. Bu amaçla, bir taşıtın seyir 
ve dinamik verileri komşu taşıtlardan ve alt yapıdan alınan 
verilerle birlikte işlenmektedir. Bu çalışmada, işbirlikçi etkin 
güvenlik sistemleri için yapay sinir ağı kullanılarak bir taşıt 
konumu kestirim modeli geliştirilmiştir. Bu modelin sabit ve 
düşük hesap zamanı ile birlikte yüksek doğruluk özellikler-
ine sahip olması amaçlanmıştır. Önerilen modelin başarımı, 
bu çalışmada geliştirilen bir gerçek zamanlı test ortamı 
ile ölçülmüştür. Sonuçlar benzer çalışmaların başarımı ile 
karşılaştırılmış ve önerilen modelin diğer modellerden daha 
iyi sonuçlar sunduğu gösterilmiştir.

ANAHTAR KELİMELER

İşbirlikçi etkin güvenlik sistemleri; Taşıtlar arası iletişim; Taşıt 
korumu kestirimi; Yapay sinir ağları;
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