
ABSTRACT

The main purpose of this study was to investigate the 
use of various chaotic pattern recognition methods for traf-
fic flow prediction. Traffic flow is a variable, dynamic and 
complex system, which is non-linear and unpredictable. The 
emergence of traffic flow congestion in road traffic is esti-
mated when the traffic load on a specific section of the road 
in a specific time period is close to exceeding the capacity 
of the road infrastructure. Under certain conditions, it can 
be seen in concentrating chaotic traffic flow patterns. The 
literature review of traffic flow theory and its connection with 
chaotic features implies that this kind of method has great 
theoretical and practical value. Researched methods of  
identifying chaos in traffic flow have shown certain restric-
tions in their techniques but have suggested guidelines for 
improving the identification of chaotic parameters in traffic 
flow. The proposed new method of forecasting congestion 
in traffic flow uses Wigner-Ville frequency distribution. This 
method enables the display of a chaotic attractor without 
the use of reconstruction phase space.
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1. INTRODUCTION

Traffic flow congestion has become a social predic-
ament, which demands increasing national resources. 
Road traffic flow prediction plays an important role for 
traffic managers and in planning the improvement of 
traffic flow management. Hence, collecting data and 
using it to predict future traffic patterns in a way that 
enables the estimation of traffic flow congestion is of 
most importance. With the use of intelligent transport 
systems, traffic estimation and prediction  has become 
more reliable for traffic managers [1]. 

Another predicament is the fact that some traffic 
congestions cannot be predicted in either space or 
time. The cause of the congestion of traffic flow is re-
searched in various states of traffic flow. 

Losses (costs) for temporary and occasional con-
gestion of traffic flow can also lead to long-term con-
gestion on the roads, most often measured by the 
external costs of transport. These are the costs of traf-
fic accidents, due to delays in traffic flow and due to 
the impact of traffic flow on the environment (exhaust 
emissions, noise, and dust).

In 2014 the European Commission [2] published 
a paper in which external costs in EU road transport 
were estimated to between 140 and 240 million euros 
annually. Of these, the largest share was incurred by 
delays in road traffic. Traffic flow uncertainty reflects its 
causation through the influence of various elements. 
These elements can be divided into categories based 
on their features. In terms of environment they can be 
divided into external and internal elements. External 
elements could be weather etc. while the internal el-
ements could be road conditions and car movement 
conditions. Further, based on the features, they could 
be divided into subjective and objective elements. 
Passenger’s destination, the reason for travel, etc. 
are all objective elements, while driver’s skills, habits, 
character etc. all fall under subjective elements. With 
this in mind, it can be easily seen that the elements 
affecting traffic flow are not certain. For example, hu-
man subjective mobility. Humans predict the reason 
for going somewhere at some point in the future. Sim-
ilarly, due to differences between drivers in skills and 
character, it is not possible to accurately predict the 
drivers’ behaviour. All of these factors combine to cre-
ate the uncertainty of traffic flow. These uncertainties 
are reflected in traffic flow, through congestion or irreg-
ular movements. 

Therefore, the presented paper is a research which 
seeks to investigate and find a method or methodology 
which can in a relatively short time calculate a large 
number of key parameters of traffic flow that would 
enable us to predict road congestion faster and more 
accurately.
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2. LITERATURE OVERVIEW

Traffic flow is a complex random system, which is 
affected by numerous elements that feature uncer-
tainty and complexity. If we take the traffic flow as 
a flow which has cases of mobility, with observation 
time-sequence can be derived and further research 
conducted. 

At the earliest stage three models were used – 
moving average model [3], autoregressive moving av-
erage model [4], and regressive model [5]. These mod-
els considered traffic flow impact elements in a very 
simple manner. The parameters were usually derived 
from the least square real-time estimates which can 
be derived through simple calculations and are suit-
able for real-time data updates. But these prediction 
models could not reflect non-linear relations in a traffic 
flow system, and the impact of other elements in the 
system were not sufficiently assessed. So, the disad-
vantages are fairly clear; when prediction data inter-
vals are shortened, the predictive precision is largely 
influenced by these shortcomings.

It is exactly for this reason that researchers have 
developed more complex and more precise prediction 
models and methods which can be divided into two 
categories:
1) Methods based on certain mathematical models: 

multi-element regressive model, ARIMA model, 
associative model of self-adaptive load sum, Kal-
man filter model, model of reference function and 
smooth component, as well as combined prediction 
models comprising these methods and models.

2) Non-model calculation methods: non-parameter 
regression, spectrogram analysis, model of space 
reconstructs, microwave network, multi-dimen-
sional fractal method, and other prediction models 
based on micro-wave analysis and reconstruction 
related to neural networks.
Traffic variables estimation, i.e. volume, speed, 

density, travel time, headways, etc. are important in 
traffic planning and design operations. Several meth-
ods are presented in the literature for prediction of 
traffic parameters, such as time series analysis, re-
al-time method, historic method, statistical methods 
and machine learning, etc. To understand the working 
process behind each of these methods it should be 
understood that the methods have both advantages 
and limitations. For the data-based algorithms and 
time series model limitations, Smith [6] applied neural 
networks to short traffic flow prediction. Another model 
successfully applied to traffic flow was presented by 
Ledoux [7]. One-minute forecasting was simulated on 
the gathered data, with the queue lengths and out-
put flows achieving fairly good accuracy. Traffic fore-
casts using neural networks were also investigated by  
Kumar and Parida [8].

In the past, the chaos theory was widely used in 
medicine [9], solid-state physics [10] electronic count-
er measures [11], surveillance in IT connections [12, 
13] and also in seismic investigation. Much of the re-
cent work in this field focuses on enhancement tech-
niques and methods of increasing the signal-to-noise 
ratio [14–17]. Methods like linear regression, logic 
regression model, Poisson model and negative binom-
inal model are subject to strong assumption and lim-
itations in applications [18]. Some methods are more 
commonly used; however, this does not state its accu-
racy in prediction.

3. NEW METHOD OF CHAOTIC PATTERN 
IDENTIFICATION
Detailed analysis of various chaotic pattern identi-

fications helped to understand the limits of the meth-
ods used for chaotic pattern identification. Wigner-Ville 
distribution has favourable frequency aggregate since 
its spectrogram  clearly shows the signal frequency 
and energy. Chaotic time sequence is an appearance 
of a low bound, non-linear and certain dynamic sys-
tem, which looks like a random signal but in reality it 
is not. Wigner-Ville’s good frequency aggregate can 
show internal layers of chaotic time sequence, and it 
can use Lebesgue measure to perform quantitative 
analysis on the chaotic features of time sequence. 
This chapter explains this kind of chaotic identification 
method, using the Duffing chaotic dynamic system as 
an example [19].

( , ) ( ) * ( )W t f s t s t e d2 2s
j f2x x

x= + -
3

3 r x-
-
#  (1)

where t and f are time and frequency components, s* 
is a complex conjugated form of the original signal and 
τ is time delay, while e-j2πfτ is a phase function and j is 
an imaginary number. Wigner-Ville has many favour-
able features especially for traffic flow prediction [20, 
21].

With the use of bilinear transformation, which is of-
ten used in digital signal processing and discrete-time 
control theory, transformation occurs from continu-
ous-time system representations into discrete-time 
and vice versa. There is no window function. This way, 
we can avoid short-time Fourier transform in time res-
olution. It is exactly due to this advantage and a lot 
of favourable characteristics in its distribution that the 
Winger-Ville transform is widely used in many real proj-
ects. 

Discrete Wigner distribution has many calculating 
methods. Here we have used the fast Fourier trans-
form - FFT calculation method. When it comes to long 
sequences without cycles, before FFT is performed, 
a window has to be added to the sequence, i.e. the 
sequence must be defined as a Wigner discrete  
distribution. From the definition, it can be seen that 
Wigner distribution is a form of visual distribution of a 
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signal energy. Theoretically, W(t,f) is a certain share in 
total energy which is occupied by time and frequency 
units. Times and frequencies should always be posi-
tive, but in reality, it is a different story. 

With the selection of various k0 Lebesgue mea-
sures in a Wigner-Ville transform on x(t), frequency 
intervals can be presented. We can determine the 
chaotic or periodic state of Lebesgue measure with its 
frequency intervals ω.

3.1 Duffing's dynamic attributes

Duffing’s oscillator holds an important place in 
non-linear dynamics research. A form of the equation 
for Duffing’s oscillator is simple, but it can derive many 
characteristics of a non-linear state. This is because 
Duffing has added on the right side of equation an 
item of additional force, which for the result has the 
system’s intrinsic frequency and frequency of addition-
al force interacting. 

Adjusting the range value of the driving force, which 
makes the system alternate between chaotic and peri-
odic state, a Runge-Kutta calculation is used to derive 
an equation on the derived x(t), and with Wigner trans-
form we get W(t,ω).

A Holmes model of Duffing’s oscillator has been 
chosen in order to identify chaotic patterns. Its equa-
tion is as follows:

( )cosx kx x x t3 5 c ~+ - + =:: :  (2)

where k=0.5 denotes the ratio of damping, which is 
the reference signal and also an internal signal in the 
forced periodic terms. The term is the non-linear re-
covery force in system 1, the kinematic state of the 
system depends mainly on this recovery force term  
γcos(ωt). The experiments have proven that damping 
ratio k ranges from 0.2-0.5 [22]. With k=0.5 and equa-
tion for the state above it follows:
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x
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In Equation 2, γ is the range of periodic driving force, 
while k is the damping ratio and –x3+x5 is the non-lin-
ear recovery force in system 1. The system mainly de-
pends on the recovery force rcos(ωτ), where r is an 
amplitude of the reference signal in the chaotic critical 
state. Equation 3 can now be used to model a period-
ically forced pendulum with a cubic restoring force. 
Presented Equation 3 is used to model a periodically 
forced resistor circuit with non-linear elements where 
x(t) represents the charge oscillating in the circuit at 
time t.

In Figure 1 the Duffing system damping ratio is 
k=0.5. When k is fixed, the state of the system will 
change frequently according to the changes of γ 
(range of periodic driving force) – state of homoclinic 
orbit, bifurcation orbit, chaotic orbit, critical period or-
bit, orbits of huge periods. The time-domain waveform 
and phase plane orbits of various states of this system 
are shown in the figures below. Analysing the Duffing  
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Figure 1 – MATLAB model of Duffing's dynamic system
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system presented in Figure 1, the time-domain wave-
form and planetary orbits can be established:
1) when γ=0, the saddle point for the system phase 

plane is (0,0) and the focal point is (±1,0). Point 
(1,1) should in the end, stop between two focal 
points as shown in Figure 2 and Figure 3. 

2) when γ<0, the system encounters complicated dy-
namical states which can be divided into several 
cases. 

3) when γ is relatively small, the phase orbit behaves 
as attractor. Phase points are circling around the 
focal points, or another focal point and vibrating 
when γ exceeds the fixed closing value critical value 
- γc (size of γc can be derived from Melnikov’s meth-
od) [23]. Simultaneously as γ rises, the system will 

go from homoclinic orbit (Figure 3), periodical bifur-
cation and all the way to a chaotic state (Figure 4). 
This process is very fast. If γ is presented for a long 
time, the system will always be in the chaotic state. 
Only after a higher closing value of γd appears - the 
amplitude of the driving power - will the system en-
ter a periodic state (Figure 5). At that moment, the 
phase orbit will encircle focally the saddle point, 
and in the corresponding Poincare map it will also 
be a static point.

3.2 Identification of chaotic features based on 
Wigner-Ville transform

Equation –x3+x5 was taken for the Duffing oscilla-
tor restoring force item as follows:
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( )cosx kx x x t3 5 c ~+ + =-: ::
 (4)

Adjusting the range value of the driving force, which 
makes the system alternate between a chaotic state 
and a periodic state, a four step Runge-Kutta calcula-
tion method to derive the new equation was used. On a 
derived x(t), the Wigner transform was applied, which 
is written as W(t,ω). 

In the figure, the horizontal coordinate represents 
the frequency and the vertical one represents the 
width. Figure 7 clearly shows differences between the 
chaotic state and the periodic state. Its Wigner distri-
bution domain is flat, but it still has a certain regular-
ity, and it is exactly that intrinsic regularity mentioned 
above when discussing chaotic nature. In the period-
ic state, a graph of Wigner distribution clearly shows 
wave peaks, while other parts are flat. This explains 
that at that moment the Duffing system has been en-
tering from one periodic state into another. Still, these 

frequency spectrograms cannot describe or identify 
these two types of states. This requires the usage of 
a Lebesgue measure in order to further explore the 
system. A Lebesgue measure gives a concrete way of 
measuring the volume (or area) of subsets of Rn. Here 
we will use [24]: 

L(k0)=ω (5)

Its Wigner distribution domain is flat, but it still has 
a certain intrinsic regularity, which was mentioned 
above when discussing chaotic nature. In the periodic 
state, the Wigner distribution graph clearly shows wave 
peaks, while other parts are flat. This explanation for 
this is that the Duffing system has been entering from 
one periodic state into another. Nevertheless, these 
frequency spectrograms cannot describe or identify 
these two types of states; this requires the usage of 
a Lebesgue measure in order to further explore the 
system. Wigner-Ville’s good frequency aggregate can 
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show internal layers of chaotic time sequence, and 
with the use of a Lebesgue measure we can perform 
quantitative analysis on chaotic features of the time 
sequence. The use of a Lebesgue measure provides 
us with a finite number of countable intervals. We will 
use [25]:

L(k0)=║W(t,ω)║≥ k0 (6)

c

k0

L0 L1 L2 ω

Figure 6 – Visual explanation of L(k0) size

Its amplitude frequency is shown in Figure 6. Ac-
cording to the section above where the Lebesgue 
measure and the additive of union of all non-overlap-
ping countable interval lengths, the following must be 
pointed out:

L(k0)=L0+L1+L2 (7)

There are many methods of selecting k0, but the 
suitability of the selection immediately decides on the 
accuracy of chaotic pattern identification. Thus, a gold-
en section point was used: [26]:

k0=max║W(t,ω)║· 0.618n (8)

In this way, thanks to the change of the selected 
value n we can observe the situation with a Lebesgue 

measure L(k0) when there is a change in size of the 
chaotic and periodic states, which is represented in 
Table 1 and Figure 7. 

Table 1 – N value chaotic state L(k0) large period L(k0)

n value Chaotic state L(k0) Large period L(k0)

4.4 0.86748 0.024587
4.8 0.96724 0.037868
...

8.2 1.45823 0.153278
...

12.2 1.470796 1.315078
...

13.3 1.593079 1.593079
13.6 1.593079 1.593079

Based on Table 1 and Figure 7 one can conclude as 
follows:
a) The system is in a chaotic and periodic state, while 

ω of the Lebesgue measure rises in conjunction 
with the rise of n value.

b) Despite the increase of L(k0)’s n value following 
the increase of n, the curves still differ. The rise 
of the curve of the periodic state is smooth and 
stable, because of the shape of the spectrogram 
after curve goes through the Wigner transform. In 
a chaotic state its shape is not smooth and stable; 
it shows irregular ups and downs, and the curve’s 
ascending speed is faster than the one in the peri-
odic state. 

c) When the n value is the same, the L(k0) value in the 
large periodic state must be lower than the same 
values in the chaotic state.   
Using the above simulation experiments and con-

clusions, it can be seen that the method of chaotic pat-
tern identification which is based on Wigner transform 
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Figure 7 – Change of Lebesgue measure following the change in n (left – chaotic state, right – periodic state)
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and Lebesgue measure is actually based on assessing 
the trends of speed changes in the L(k0) value when 
it follows the changes in n value in order to observe a 
chaotic state. At the same time the Duffing system was 
used to prove the effectiveness of this method.

4. CHAOTIC PATTERN IDENTIFICATION IN 
TRAFFIC FLOW-TIME SEQUENCE

The general effects of manmade subjective ele-
ments and non-manmade objective elements allow 
the phenomena of regular traffic flow and chaotic traf-
fic flow to coexist. When there is a low number of cars 
in the street, they are in a state of free movement. 
Along with the increase in the number of cars and oth-
er external disturbances or characteristics of drivers 
and their cars which affect the element of uncertainty, 
there is a greater chance of a chaotic state.

Regarding the observation done in time-sequence, 
it must be pointed out that although there is a certain 
correlation between time and traffic flow, there might 
be many other elements (such as noise) which make a 
chaotic state less visible. So, in order to make its cha-
otic state more visible, some preparations regarding 
time-sequence must be made. With preparation, more 
precise predictions can be reached for better chaotic 
pattern identification. 

4.1 Pre-processing of time sequence

There are many pre-processing methods, but here 
the smoothing and differential method will be used. 
1) The smoothing method when gathering time se-
quence data involves a process of “burring”. The traf-
fic flow structure is complex, so the time sequences 
it produces might be affected by various subjective 
and objective impacts, which could bring about sud-
den changes. Hence, the result and predictability of 
chaotic pattern recognition might be affected. We will 
use the preceding smoothing which uses a real val-
ue of the first i point and the smoothing value of the 
preceding point M-1 as a value of the first point i. The 
mathematical model regarding time-series {x0, x1,… xn} 
is shown below. 

( )x
x

M x x x
i M

M i n1
<i

i M i M i
1

1 2 f # #
= + +- + - +
)K

 
(9)

Among them: i,M ∈ Z, x i : smoothed value of the i-th 
point, where x1 is the value of the first point i, after 
smoothing. Equation 7 shows the first smoothing of the 
time sequence, or in other words the gradual level-
ling of the time-sequence. The M value shows a time 
sequence that was smoothed several times by a few 
points. During computing, the size of the M value must 
not be too large, otherwise the traffic flow time-se-
quence could distort and not only affect the precision of  

criteria for chaotic pattern identification, but also its 
predictability.
Let us use M=5.
2) Differential operators where the number of col-
umns {Xn} defines differential operator Δ:ΔXn=Xn+1-Xn, 
where Xn is place n of the preceding differential and 
ΔXn=Xn-Xn-1, where Xn is place n of the latter differen-
tial operator. Here we use a differential operator which 
was taken from the time sequence processed during 
the smoothing method. So, the value of the first point i 
of the latter differential in the time sequence x iD" ,K is:

x x x i n1 <i i i 1 #D = - -K K K  (10)

It should be noted that the time sequence can be 
processed by the differential method only once, or it 
cannot be processed. This is because the differential 
of the time sequence and the derivation of the con-
tinuing functions is the same, and according to the 
principle of infinitesimal calculus, the equations with a 
large number of arbitrary items after limited derivation 
can transform all into constants. Likewise, multiple 
differentiation might affect the chaotic features of the 
time sequence and thus affect the result of the criteria 
for chaotic recognition and there will be problems in 
restoring the dynamic characteristics of awkward at-
tractors which might occur after the reconstruction of 
phase space.

4.2 Case study data

The data were collected on a two-lane highway in 
Slovenia, where in near proximity (1 km) there was no 
input or output of cars or other vehicles. The data were 
collected by a pneumatic traffic counter on a Slove-
nian highway. The locations were randomly selected, 
where data were collected for three months. However, 
not all of the collected data were acceptable. A typical 
working day was observed, with no specific holidays or 
weather conditions. The proposed method identifies a 
random occurrence of traffic flow congestion, which is 
not in any way induced by accident, weather, holidays, 
etc. 

The locations were not in linear connection due to 
possible interconnection which would distort the ac-
tual prediction of chaotic patterns in the time frame.

For the identification of the chaotic phenomena in 
the time sequence, a non-typical date was used with 
specific limitations: no difficult weather conditions, 
weekdays - not Monday or Friday, and there should be 
no holiday on any chosen date.

4.3 Identification of chaotic phenomena in 
time sequence

The method for pre-processing time to implement 
the chaotic pattern recognition was used on a period of 
time (6:00 – 11:00) at a certain crossroads on an ele-
vated bridge in a traffic flow time sequence (sequence 
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1, time interval: 1 min, total of 300 data). Figure 8 - (left 
side) shows the amplitude frequency diagram for the 
chaotic time sequence; the right side shows a diagram 
of the Lebesgue measure.

Figure 8 shows that the shape of the Lebesgue 
measure curve is not smooth; it shows irregularities 
and the speed of the ascending curve is very high. So, 
based on the conclusions in Chapter 3.1 it can be es-
tablished that the traffic flow time sequence does have 
chaotic features.

Lyapunov’s method was used for chaotic pattern 
recognition in this time sequence. In this place we 
used the same day and the same place of this se-
quence and we gathered data for 24 hours. There was 
a total of 1,440 data. We have calculated Lyapunov’s 
biggest characteristic exponent as λ=0.015>0. so, this 
time sequence has chaotic features, and at the same 
time we have proven the feasibility of our method.  
The most important reason for chaos is that the car 
flow at this period was the heaviest, and it was diffi-
cult to avoid accidental elements (such as traffic acci-
dents, or traffic light intervals, etc.), which might have 
even caused overcapacity of the road and even a traf-
fic jam, which as a result made regular traffic move-
ment change to irregular movement, which in the end 
produced a chaotic phenomenon.

If we use the same method on the same road, but 
during early morning hours (2:00-7:00) (time interval 
is 1 min, total of 300 data, recorded as time sequence 

2) and implement chaotic pattern recognition, we get 
the results shown in Figure 9.

We can see from Figure 9 that the curve whose 
value of L(k0) produces increases when n starts to in-
crease is clearly different from the one in sequence 1. 
The growth is smooth and stable. According to the be-
fore-mentioned conclusion, it can be established that 
this traffic flow time sequence does not have chaotic 
features. This time, the traffic flow time sequence pat-
tern had features similar to those of periodic states 
found in the Duffing system. But this state is not the 
periodic state for the traffic flow. Instead, it is a state of 
regular movement. The reason for this state is a really 
small number of cars, that is, cars are moving freely, 
and there are no accidental elements (car accident, 
manmade traffic control, etc.). During this periodic 
state of traffic flow, the movement should be described 
as regular.

5. CONCLUSION

This study presents the importance of good and 
reliable chaotic pattern recognition in the traffic flow. 
For the presentation value, three months of data were 
used at three different locations which had no inter-
connections. The figures and numbers in the tables 
present a new possible model for traffic flow predic-
tion. With the use of the Duffing system, a calculation 
using Lebesgue measure and Wigner-Ville distribution 
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Figure 8 – Amplitude frequency diagram for chaotic time sequence (left), and a diagram of the Lebesgue measure (right)
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Figure 9 – Amplitude frequency diagram for chaotic time sequence (left), and a diagram of the Lebesgue measure (right)
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for search of traffic flow patterns was presented. The 
following can be concluded: the system is in a chaotic 
and a periodic state, while ω of the Lebesgue mea-
sure rises in conjunction with the rise of the n value; 
despite L(k0)’s n value increase following the increase 
of n, their curves still differ; when the n value is the 
same, the L(k0) value in the large periodic state must 
be lower than the same values in the chaotic state. 

The paper put forward a new way of using the Wign-
er transform and a Lebesgue measure to perform a 
chaotic identification of a time series. Firstly, the Wign-
er-Ville’s distribution of frequency aggregation was 
used, thus making the chaotic characteristics of time 
sequence in traffic flow emerge with no need of the 
same spatial reconstruction. A Lebesgue measure was 
used to perform a qualitative analysis of the traffic 
flow. With the use of the Duffing chaos system, the fea-
sibility of the presented method was evident. The cha-
os characteristic identification in the time sequence of 
the traffic flow also acquired satisfactory results, which 
also proved that there are both sequential movement 
and chaotic movement in the traffic flow system. It was 
estimated now when and where the possible conges-
tion would occur. Further research will incorporate the 
presented model in a new model of a chaotic neural 
network. It can be assumed that the model will be fast-
er and more reliable than an ordinary neural network.
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NAPOVEDOVANJE PROMTNEGA TOKA S POMOČJO 
DUFFINGOVEFGA OSCILATORJA IN WIGNER-VILLE 
PORAZDELITVE

POVZETEK

Osnovni namen študije je raziskati uporabo metode 
razpoznavanja kaotičnih vzorcev za uporabo pri napove-
dovanju zgostitve prometnega toka v cestnem prometu.  
Prometni tok je spremenljiv, dinamičen in kompleksen 
sitem, ki je nelinearen nepredvidljiv. Nastanek zgostitve pro-
metnega toka na cestnem odseku ocenjujemo v časovnem  
intervalu, ko le-ta prične presegati kapaciteto cestnega 
odseka. Pod določenimi pogojih je mogoče zaznati kaotični 
vzorec v prometnem toku. Pregled literature teorije promet-
nega toka in njegovo povezavo s teorijo kaosa je prikazal 
veliko teoretično in praktično vrednost tovrstne metode. 
Raziskane metode identifikacije kaotičnega vzorca v pro-
metnem toku so pokazale omejitve, zato je v nadaljevanju 
opisana smernica za izboljšavo prepoznavanja kaotičnih 
vzorcev v prometnem toku. Predlagana nova metoda za na-
povedovanje zgostitev v prometnem toku predlaga uporabo 
Wigner-Ville frekvenčne porazdelitve. Postopek omogoča 

prikaz kaotičnega atraktorja brez uporabe rekonstrukcije 
faznega prostora.

KLJUČNE BESEDE

cestni promet; napoved zgostitve prometa; dinamični sistem; 
Wigner-ville porazdelitev; identifikacija kaotičnih parametrov;
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