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A MIXED INTEGER LINEAR PROGRAM FOR THE SINGLE 
DESTINATION SYSTEM OPTIMUM DYNAMIC TRAFFIC 

ASSIGNMENT PROBLEM WITH PHYSICAL QUEUE

ABSTRACT

In order to solve the system optimum dynamic traffic as-
signment problem, the whole link model with physical queue 
is used to formulate the single destination system optimum 
dynamic traffic assignment problem as a mixed linear pro-
gram. A relationship between the cumulative curves and the 
wave speed presented by Newell (1993) is used to present 
a dynamic network model in considering spillback queue. 
And nonlinear constrains are relaxed into mixed linear con-
strains; the linear program software is used to solve the 
system optimum dynamic traffic assignment problem. A nu-
merical example illustrates the simplicity and applicability of 
the proposed approach.
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1. INTRODUCTION

With the development of Intelligent Transportation 
Systems, the dynamic traffic assignment problem has 
been one of the most important areas in transport re-
search. Contrasting with its user equilibrium counter-
part, the system optimal dynamic traffic assignment 
problems (SO-DTA) remain an underdeveloped impor-
tant area. Such assignment can be divided into two 
classes: one class are the Path-based SO-DTA models; 
however, the research along this line is rather limited. 
One major reason is that solving of path-based SO-DTA 
models usually requires the calculation of the dynamic 

marginal path travel costs (PMC). However, the path 
cost mapping usually does not have an explicit func-
tional form; the evaluation of PMC is not straightfor-
ward. Shen, W. (2007) gave a dynamic PMC function 
with point queue in a simple network without any diver-
gence [1]; Chow, A. (2008) provided a detailed math-
ematical analysis and discussion of dynamic system 
optimal assignment when the deterministic queuing 
model is adopted [2]. Another class are the Link-based 
SO-DTA models. Wie, B. (1998) presented a non-con-
vex control model of dynamic system-optimal traffic as-
signment [3]. Ziliaskopoulos, A.K. (2000) used the cell 
transmission model to formulate the single destina-
tion SO-DTA problem as a Linear Program [4]. Shen, W. 
(2008) reviewed the link-based SO-DTA formulations 
based on different traffic flow models and explored the 
impact of modeling details in the traffic flow model on 
the optimal solution of the SO-DTA model [5]. However, 
previous researches did not consider the link-based 
dynamic traffic flow models with the physical queue. 
In this study, the link-based SO-DTA formulations with 
physical queue are formulated as a mixed integer lin-
ear program.

The rest of the paper is organized as follows; 
firstly, a relationship between the cumulative curves 
and the wave speed is used to present a dynamic net-
work model with physical queue in single destination 
network. Then, non-linear constrains are relaxed into 
mixed linear constrains, the linear program software 
is used to solve the SO-DTA. Finally, the numerical ex-
ample in a network is given.
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2. MODEL FORMULATIONS

Notation:
,w waf a
b  = the forward and backward wave speed on link 

a.
la = link a length. ka = congested density on link a.

,S Sain a
out  = entry and exit capacity on link a.

C ka
out ^ h = exit capacity on link a during interval k .

,X k Y ka a^ ^h h = possible inflow and departure flow rate 
on link a during interval k .

,u k v ka a^ ^h h = actual inflow and exit flow rate on link a 
during interval k .

,U k V ka a^ ^h h = cumulative arrivals and departures at 
link a until interval k .

q ka^ h = queue vehicle number on link a until interval 
k .

t ka^ h = travel time on link a for travelers entering this 
link at interval k .

We consider a road network G(N,A) composed of a 
finite set of nodes, N (an ordinary node set No , a merge 
node set Nm , and a diverge node set Nd ), and a finite 
set of directed links, A (a set Lr  of regular links and a 
set Ld  of dummy links). Let a be a link, each dummy 
link a Ld!  connects one origin to the network and has 
infinite capacity and zero free flow travel time. Let R 
be the set of origin nodes and let r  represent an origin 
r R! . Let s represent a single destination.

The studied horizon is discretized into m intervals 
of length d  such that T m $ d= . In other words, we have 
intervals, index k  representing interval ,k k1 $ $d d-^ h h6 . 
Here, it is assumed the study horizon is long enough to  
ensure all travelers can exit from the network after time  
T . On the other hand, it is also assumed that the value 
of d  is small enough so that the discrete-time model 
can approximate its continuous time counterpart. Fur-
ther it is assumed that the flow rate, either specified 
by link or by path, is constant during a given interval.

2.1	 Link flow propagation

Newell (1993) analyzed a relationship between 
the cumulative curves and the wave speed [6]. The 
flow-density relationship is described by only two wave 
speeds. The forward wave speed is similar to free flow 
speed under the point queue conditions. If the pos-
sible link departure flow exceeds the maximum capac-
ity of link a, a queue is formed and the backward wave 
starts moving. The backward wave speed reflects the 
increasing queue length. Under the spillback queue 
concept, the link capacity may change over time since 
a queue physically backs up and may reduce the link 
capacity of the upstream link.

The following section shows the link flow propaga-
tion and node flow assignment under the spillback 
queue concept.

2.1.1	 Possible link inflow and departure flow

Following M. Kuwahara (2001) and Guido Gentile 
(2005) [7, 8] the possible link inflow rate can be ex-
pressed as follows:

X k
v k

w
l k V k

w
l k l

S

if U

otherwise

>
a

a
a
b
a

a a
a
b
a

a a

a
in

$
=

+- -
^

c ^ c
h

m h m
* 	 (1)

where Sain is the entry capacity (link storage capacity) 
of link a, k la a$  is the link maximum storage space on 
link a. If a queue reaches the link entry at time interval 
k , the possible link inflow is restricted to the actual exit 
flow rate at time interval /k l wa a

b
- , otherwise, X ka^ h is 

equal to the link entry capacity.
The possible link departure flow rate at time inter-

val k  consists of two parts: one is the actual link inflow 
rate at time interval /k l wa a

f
- , the other is the queue 

vehicle at time interval k 1-  (in previous studies, the 
link queue is neglected). The equation is written as
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The queue vehicle number at time interval k  can 
be expressed as follows.
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The calculation method of the queue length is 
similar under the spillback queue and the point queue 
concepts; however, both meanings are distinctive in 
essence. Under the point queue concept, we assume 
a vehicle as a point without length; therefore a point 
queue is vertically formed at the exit point of link. How-
ever, a spillback queue is formed horizontally, and we 
cannot use the queue vehicle number to calculate ex-
plicitly the queue length, since the speed and density 
of the queuing vehicles vary over time and space as a 
function of exit capacity.

2.2	 Node flow assignment

The node flow assignment model is used to deter-
mine the exit capacities of link, on the basis of the pos-
sible link inflow rate of the downstream links and of 
the turning flows. To simplify the exposition, we first 
consider only two typologies of nodes: “merging” and 
“diverging”.

Considering the merging node n with entering links 
, ,a ai1 f  and exiting link b. The actual exit flow during 

time interval k  is given by
,
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where k,b aim ^ h expresses the supply flow on link ai  
from the downstream link b. We assume 



Promet – Traffic&Transportation, Vol. 22, 2010, No. 4, 245-249	 247 

S. Li, Q. Zhou, Y. Ju: A Mixed Integer Linear Program for the Single Destination System Optimum Dynamic Traffic Assignment Problem...

/k S S,b a a
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the k,b aim ^ h is calculated using the method presented 
by M. Kuwahara (2001) and Guido Gentile (2005), too 
[7, 8]. Eq.(4) showing the actual exit flow during time 
interval k  on link ai  may be subject to the restriction 
of the link departure flow as well as the possible inflow 
of the downstream link. When the upstream link num-
ber of node i  is 1, then k 1,b aim =^ h , since eq.(4) can 
further model the actual link exit flow at the ordinary 
node. ,n nP W^ ^h h represent the upstream and down-
stream link set of node n, respectively.

Considering a diversion node n with entering link a 
and exiting links , ,b bj1 f . The link exit flow is given by

max v k,a b
b

j
j

^c hm/ 	 (5)

, , ,v k Y k a n k n N,a b
b

a dj
j

6# ! !P^ ^ ^h h h/ 	 (6)

, , ,v k X k b n k n N,a b b j dj j
6# ! !W^ ^ ^h h h 	 (7)

Where, v k,a bj ^ h represents the link turning flow 
from link a to link bj  during time interval k . Eqs.(5-7) 
use the program method in solving the maximum turn-
ing flow at diversion node n. Eq.(6) represents the total 
turning flow that cannot exceed the possible departure 
flow of the upstream link a. Eq.(7) representing the 
turning flow must be smaller than the possible inflow 
of the downstream link. Here, the link actual exit flow 
can be represented as follows:

, ,v k v k a k,a a b
b

j
j

6=^ ^h h/ 	 (8)

2.3	 Origin link

At the network boundary, the travel demand gener-
ated at the origins during each time interval enters the 
dummy link [5]. The boundary constraint, namely, is 
as follows:

, , ,u k q k a L r R ka r d6 ! !=^ ^h h 	 (9)

where q kr ^ h represents the traffic demand from 
origin r  entering the network during time interval k .

2.4	 Objective function

The total system travel cost is used for the objec-
tive function in the previous studies. However, the 
major difficulty in solving these SO-DTA formulations 
are non-linear. In this study, in order to model Linear-
ity, the minimum of the total queue number is used in 
solving the traffic flow. The objective function can be 
expressed as follows:

min q ka
ka

^c hm// 	 (10)

Constraints: (1–9)

3.	MODEL LINEARIZATION

The major challenge in solving the above link-
based SO-DTA formulations with physical queue are 
the non-convexity associated with the non-linear in-
equality constraints in the formulations. To bypass 
the non-convexity, these non-linearity inequalities are 
often relaxed into the linear inequalities [9]. For exam-
ple, Eq. (1) can be relaxed to three linear inequalities 
as follows
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Where L, U  are very large negative and positive 
constants, respectively. f  is a very small positive 
constant, Z ka^ h is a binary variable (0,1) indicating 
“if-then” conditions of eq.(1). Z k 1a =^ h  for the case 

/V k l w k l U ka a a
b

a a a$ #- +^ ^h h; Z k 0a =^ h  otherwise. 
Substituting the two values of Z ka^ h into eq. (11a), 
one can see.
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Then the value of Z ka^ h can further determine the 
possible inflow X ka^ h. If Z k 0a =^ h  (1), eqs. (11b-11c), 
become:
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This completes the verification.
Further, eq. (4) can be relaxed to the following lin-

ear inequalities
S U F k v k Sa
out

a a a
out1

i i i i
$ # #- ^ ^h h 	 (14a)
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F k F k F k 2a a a
1 2 3
i i i+ + =^ ^ ^h h h 	 (14d)

where, F ka1i ^ h, F ka2i ^ h, F ka3i ^ h are binary variables which 
must be either one or zero. U  is a very large positive 
constant. According to eq. (14d), in the three binary 
variables, only one variable is 0, the other two vari-
ables must be 1. If F k 0a

1
i =^ h , eq. (14a) is equivalent 

to:
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According to the above explanation, if 0F ka1i =^ h , 
the actual link exit flow is equal to Saouti . Summarized, 
eq. (4) can be replaced by these four linear constraints 
eqs. (14a-14d).

Finally, the mixed integer linear program based SO-
DTA formulations are presented

Objective function: eq. (10)
Constraints: eqs. (3, 6, 7, 8, 9, 11a, 11b, 11c, 14a, 

14b, 14c, 14d)
The total amount of flow, however, out of a diverg-

ing node during time interval k  is determined by objec-
tive function (5). This flow could be less than the flow 
suggested by the program; however, the total turning 
flow during time interval k  is beneficial for the overall 
system wide travel. After relaxation, the formulation 
becomes a mixed integer linear program and can be 
solved easily by general linear programming solvers. 
We use the linear programming solver to solve it.

4.	EXAMPLES

The example network is a 6-link, two-OD network 
illustrated in Figure 1. The dotted lines represent the 
dummy link relative to the origin and destination. The 
entry, exit capacity and maximum storage space on link 
1 are 1,500veh/h, 500veh/h, 1,000veh, respectively. 
The entry, exit capacity and maximum storage space 
of other links are 3,000veh/h, 1,000veh/h, 1,000veh, 
respectively. The total time interval is 2h. Other param-
eters: / 0.2l w ha a

f
= , / 0.4l w ha a

b
= , 0.1h=d .

the inflow on link 1 is equal to the entry capacity. Then, 
as the queue increases, the link queue starts to back 
up the link entry, and the link inflow at time interval 11 
is 500veh/h. We can find the link inflow may change 
over time since the queue physically backs up and may 
reduce the link inflow of the upstream link.

O1 1

2
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5 6

1

2

4

3

5

6

O2

D1

Figure 1 - Example network

Firstly, set 1,000; 3 6; ,q k k i 1 2i # #= =^ h " ,. Fig-
ure 2 gives the flow states on link 1. Because the exit 
capacity is only 500veh/h, the queue appears from 
time interval 5, and the link exit flow is equal to the 
exit capacity. Although the model can obtain the queue 
phenomenon, the link flow backup propagation does 
not appear.

Further, set 3,000; 3 6; ,q k k i 1 2i # #= =^ h " ,. Fi
gure 3 gives the flow states on link 1. At time interval 5, 
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Figure 2 - The flow on link 1 (demand 1)
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Figure 3 - The flow on link 1 (demand 2)
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Figure 4 - The change of total queue

Figure 4 gives the change of the total queue with 
the increasing demands. X Coordinates represent the 
demands between each O-D pair between time inter-
vals 3 and 6, Y Coordinates represent the evolution of 
the queue length. When the demands are smaller than 
500, the queue length is zero; when the demands are 
larger than 500, the queue can appear and increase 
with the increasing demands; however, when the de-
mands are larger than 5,000, the total queue length 
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remains unchanged since the link storage space limits 
the entering network demand. When the demands are 
larger than a value, all links in the network are congest-
ed, the surplus demand does not enter the network. In 
other words, the network is in the state of maximum 
saturation. However, the case cannot occur under the 
point queue concept, because the queue can increase 
with the increase of the demand.

5.	CONCLUSIONS

A mixed integer linear program for the single des-
tination system optimum dynamic traffic assignment 
problem with physical queue is presented. In order to 
model the spillback queue on the link, one assumes 
the flow states consist of two cases: one case is un-
congested, all vehicles can run according to the free 
flow speed; another is congested, the link capacity may 
change over time since a queue physically backs up 
and may reduce the link exit capacity of the upstream 
link. The linearization method is used in relaxing the 
non-linear equations of the model. Then the general 
linear software is adopted to solve it. In a simple ex-
ample, the model can reflect the link flow propagation 
and queue backup and so on. And we find the total 
queue length will remain unchanged when the road 
network is saturated.
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