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ABSTRACT

A bi-objective programming model (BP) with spatial eq-
uity constraints is proposed to site park-and-ride (P&R) fa-
cilities in traffic networks. Both the number and locations 
of P&R facilities are determined. The maximal coverage 
and minimal resource utilization criteria, which are gener-
ally conflicting, are simultaneously considered to reveal the 
trade-off between the quality and cost of coverage. Further-
more, the concept of passenger flow volume per cost is de-
fined and several properties of the model solutions are an-
alyzed. Finally, this model is applied to site P&R facilities in 
Anaheim, California. Application results show the trade-offs 
associated with passenger flow volume, cost and passenger 
flow volume per cost, and the effects of spatial equity con-
straints on the spatial deployment of P&R facilities.

KEY WORDS
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spatial equity;

1. INTRODUCTION

Continued reliance on private automobiles is not 
likely to be sustainable for urban development, due to 
limited natural resources, environmental pollution and 
road congestion issues. Providing reliable and efficient 
public transportation is an effective way to overcome 
car dependency and alleviate urban congestion. One 
of the options considered entails the use of park-and-
ride (P&R), a combinational mode of private cars and 
public transportations, allowing commuters to use 
their own cars in the beginning of their trip but switch 
to public transit at some point later in the same trip. 
P&R facilities can help alleviate traffic congestion and 
other adverse external effects of private vehicle travel. 

Studies in the United Kingdom and North America have 
concluded that P&R facilities are effective in reducing 
congestion [1, 2]. This importance is reflected as well 
in transportation planning of other cities like Beijing, 
where 26 large-sized P&R facilities are planned to be 
built in the vicinity of the subway lines during Beijing’s 
Twelfth Five-Year Plan period [3].

There is no doubt that the P&R facilities should be 
well planned to continue to play a role in effective tran-
sit systems. One essential aspect when planning for 
P&R services is finding appropriate geographical loca-
tions for the facilities to provide services. Planning and 
locating P&R facilities is a complex activity that must 
take multiple factors into account, including potential 
demands, characteristics of potential users, impacts 
on the surrounding neighborhoods, and the overall 
economic performance in terms of benefits and costs 
[4]. From an economic perspective, there are at least 
two important concerns when siting P&R facilities, 
i.e., covering as many potential users as possible, and 
spending as little as possible. The former concern is 
important as this provides another travel alternative to 
private automobiles. Generally, a user is regarded as 
covered if they are within a maximum acceptable dis-
tance from a facility, but certainly demand decreases 
as the distance from services increases. Thus, cover-
ing as many users as possible within a coverage dis-
tance of a facility is a major concern. In addition, due 
to the heavy investment of transport infrastructure 
projects and the limited budget, the cost becomes an-
other major concern.

Existing literature related to the P&R facility loca-
tion problem can be generally categorized into three 
classes, i.e., decision support system [5, 6], equilib-
rium analysis [7, 8] and mathematical programming 
[9-13]. Horner and Grubesic [5] and Faghri et al. [6] 
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developed various hybrid knowledge-based expert 
system and geographic information system tools to de-
termine the optimal location of a P&R facility. These 
systems provide multiple criteria to investigate alter-
native solutions, such as close to the central business 
district (CBD), the competition around the parking lot, 
and near the subway station. Their studies focus on 
the system development and do not explicitly use the 
optimization model to describe the problem. Through 
the equilibrium analyses, Wang et al. [7] optimized the 
location and parking charge of a P&R facility in a linear 
city under the assumption that the traffic demand is 
uniformly distributed along the corridor. Liu et al. [8] 
developed a competitive railway or highway system 
with multiple P&R services in a corridor in which com-
muters choose between the drive only alternative and 
the P&R facilities located continuously along the corri-
dor to characterize the equilibrium mode choice. Equi-
librium analysis is limited to a particular travel corridor. 

Sargious and Janarthanan [9] proposed a method 
for locating P&R facilities such that the total cost of the 
system is minimized. Honer and Groves [10] proposed 
a network flow-based model for location analyses of 
rail P&R. Farhana and Murray [11] proposed a multi-ob-
jective spatial optimization model to account for P&R 
application-specific objectives. These objectives cover 
as much potential demand as possible, using the ex-
isting P&R facilities as much as possible and as close 
as possible to major roadways. Fan et al. [12] used 
a bi-level programming model to locate P&R facilities 
considering the interaction between decision makers 
and commuters. Commuters are assumed to follow 
a stochastic user equilibrium behaviour. Aros-Vera et 
al. [13] proposed a mixed linear programming formu-
lation to determine the location of a certain number 
of P&R facilities so that their usage is maximized. The 
facilities are modelled as hubs. Nevertheless, these 
works, mentioned above, do not address one import-
ant issue, i.e., spatial equity.

Bröcker et al. [14] pointed out that the goal of all 
transport infrastructure projects should be evaluated 
from social welfare perspective, which is reflected in 
two aspects, efficiency and social equity. Although the 
demand coverage issue has been studied a lot in the 
previous traffic literature [15], so far as we know, most 
models cannot address the trade-off associated with 
differing levels of importance for coverage and cost 
objectives, while taking spatial equity into consider-
ation. It may cause some P&R facilities clustering with 
spatial equity constraint missing, and the spatial dis-
tribution of public resources becomes unfair. Recently, 
Lu and Huang [16] studied the P&R location problem 
with spatial equity constraints, but their earlier work 
ignored several important properties of the model 
solution, which will be developed further in this paper.

From cost-benefit perspective of public transport in-
frastructure investment, incorporating the spatial equity 

factor, this paper proposes a bi-objective programming 
model for the P&R facility location problem. In the model, 
the objectives are to maximize the number of P&R users 
and to minimize the cost of constructing P&R facilities 
simultaneously. Using a linear weighted technique, the 
bi-objective model is transformed into a single objective 
model. The concept of passenger flow volume per cost 
is introduced. Some properties of the model are ana-
lyzed and investigated. Finally, this model is applied to 
the transportation network in Anaheim, California. 

2. MODEL DESCRIPTION

In this section, the proposed model is described in 
detail. Before doing this, the notations involved in the 
model are given as follows. Let i and I be the index and 
index set of areas, respectively, J is the index set of 
potential facility sites, ai the demand in area i, cj the 
cost of locating a P&R facility on site j and a non-neg-
ative integer, îja  the demand in area i anticipated to 
use P&R facility j based on relative proximity, dij the 
distance between area i and potential facility site j, E 
the maximum acceptable service standard (distance), 
and α the minimum acceptable distance between two 
P&R facilities. Location variable xj is defined such that 
xj=1 if a facility is located at site j and xj=0 otherwise. 
Allocation variable yij is defined such that yij=1 if the 
demand in zone i is served by a facility at site j and 
yij=0 otherwise. 

Based on the assumption of user rationality, Hol-
guín-Veras et al. [17] studied the catchment area of a 
given P&R site and the optimal P&R facility location in 
a linear and two-dimensional cities, respectively. They 
found that an ellipse could approximate the catch-
ment area of a P&R facility in a two-dimensional city. 
Here, the following piecewise distance decay function 
is used to modify the demand attracted 

, ,
ˆ

0,        ,

ijd
i ij

ij

a e if d E
a

otherwise

-β ≤= 


 (1)

where β is the distance decay parameter, and β>0. 
The larger parameter β is, the more quickly the attract-
ed demand îja  decays with distance dij. Other types of 
functions can also be utilized to represent the distance 
decay, such as the power function [18]. It is worth 
mentioning that our model is different from the clas-
sical set covering model and maximal covering model. 
In the two classical models, although there exists a cri-
terion of coverage, namely the distance threshold, E, it 
is supposed that all the residents within the threshold 
distance will patronize the facility. That is to say, the 
coverage function in the two classical models is bina-
ry: either the demand is covered or not covered. Thus, 
the two models cannot express other distance decay 
forms, for example, the decrease of the demand with 
distance in a piecewise or non-linear manner. 
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From the perspective of P&R facility investors, they 
hope to make as much profit as possible, while paying 
as little as possible. Profit is composed of two parts: 
parking fee and transit fare. Suppose the parking fee 
and the transit fare are fixed. Let the sum of the park-
ing fee and transit fare be p. Then the total revenue is 

îj ij
i I j J

p a y
∈ ∈
∑∑ . Since parameter p is a constant, the ob-

jective of maximizing the revenue could be simplified 
setting p=1 and maximizing the coverage îj ij

i I j J

a y
∈ ∈
∑∑ . 

With the above notations, this proposed model is 
formulated as: 

(BP) max
yij

 ˆ( ) ij ij
i I j J

Q y a y
∈ ∈

= ∑∑ , (2)

 min
x j

 C x c xj
j J

j( ) =
∈
∑ , (3)

subject to

ij jy x≤ , ∀ ∈ ∀ ∈i I j J, , (4)

yij
j
∑ ≤1 , ∀ ∈i I , (5)

x xk l+ ≤1 , if d k l J k lkl < ∀ ∈ ≠α, , , , (6)

x yj ij, { , }∈ 0 1 , ∀ ∈ ∀ ∈i I j J, . (7)

In model (BP), objective (2) maximizes the passen-
ger flow volume using P&R facilities and objective (3) 
minimizes the cost of constructing the P&R facilities. 
If the construction cost at each potential site is identi-
cal, objective (3) could be simplified setting cj=1 and 
minimizing the number of P&R facilities selected, i.e.

min ( )
x j

j Jj

C x x=
∈
∑ . (8)

Constraints (4) require the demand is assigned 
to a facility only if it is open. Constraints (5) ensure 
the demand of each area is allocated to no more than 
one site. This implies the user rationality assumption, 
namely, if the demand is inside the threshold distanc-
es of multiple facilities, they will choose the nearest 
one. Constraints (6) are the spatial equity constraints. 
Here, we define the spatial equity issue in the sense 
that several P&R facilities may cluster if there are no 
spatial distance constraints. The constraints ensure 
the distance of any two P&R facilities is not less than 
a certain value. In other words, the spatial clustering 
phenomenon could be avoided and the spatial distri-
bution of P&R facilities in a city could reach a balance 
to some extent. Note that it is different from that in 
the context of road pricing. The spatial equity in road 
pricing literature is defined as the difference of the 
generalized travel costs of drivers travelling between 
several origin-destination (O-D) pairs. The spatial equi-
ty may be significantly different when tolls are charged 
at some selected links [19]. Constraints (7) are the in-
tegrality constraints.

3. MODEL ANALYSIS

Let S denote the feasible region of the model (BP), 
namely, S is the set of all (x,y) that satisfy equations (4) 
to (7). The model can be transformed into a single ob-
jective problem by the linearly weighted method, i.e., 

max ω ωQ y C x( ) ( ) ( )− −1 , (9)

s.t. ( , )x y S∈ , (10)

where ω is a constant, and ω∈(0,1]. If ω≠0, then the 
model could be rewritten in another form

(SPλ) ƒ( ) max  ( ) ( )Q y C xλ = - λ , (11)

 s.t. ( , )x y S∈ , (12)

where λ ω ω= − ≥( )1 0 .
Let z x y Q y C x( , ) ( ), ( )= −( )  denote the objective 

function vector of the model (BP). Then the mod-
el (BP) can be formulated as follows: max ( , )z x y , 
s t x y S. . ( , )∈ .

Definition 1. Given a feasible point of (BP), ( , )* *x y S∈ , 
if there is no ( , )x y S∈ , such that z x y z x y( , ) ( , )* *

 , then 
( , )* *x y  is an efficient solution. Here, z x y z x y( , ) ( , )* *

  
is equivalent to Q y C x Q y C x( ), ( ) ( ), ( )* *−( ) ≥ −( ) , but 
there exists Q y Q y( ) ( )*>  or C x C x( ) ( )*< , ( , )x y S∈ .

Definition 2. Given a feasible point of (BP), ( , )* *x y S∈ , 
if there is no ( , )x y S∈ , such that z x y z x y( , ) ( , )* *> , then 
( , )* *x y  is a weakly efficient solution.

Definition 3. Q y C x( ) ( )  is called passenger flow vol-
ume per cost (PFVC), where Q(y) is the total passenger 
flow volume (PFV) using P&R facilities, and C(x) is the 
total cost for building the P&R facilities.

We put forward the concept of PFVC, which could 
be regarded as an index of evaluating the return of in-
vestment on transport infrastructure investment, like 
P&R facilities. Generally speaking, marginal profit is 
used to evaluate the rate of investment return in eco-
nomics. Since the profit comes from ticket revenue in 
this model and ticket revenue is proportional to PFV, 
we could adopt the PFVC to investigate the level of the 
rate of investment return. 

Theorem 1. Given λ≥0, an optimal solution of the 
single objective problem (SPλ) must be a weakly effi-
cient solution of the model (BP). Specially, when λ>0, 
an optimal solution of the single objective problem 
(SPλ) must be an efficient solution of the model (BP).

Proof. Let ( , )* *x y  be an optimal solution of 
(SPλ), but not a weakly efficient solution of the 
model (BP). According to Definition 2, there exists 
( , )′ ′ ∈x y S , such that z x y z x y( , ) ( , )* *′ ′ > . Given λ≥0, 
we have 1 1, ( , ) , ( , )* *λ λ( ) ⋅ ′ ′ > ( ) ⋅z x y z x y . This implies 
that ( , )* *x y  is not an optimal solution of (SPλ), which 
leads to a contradiction. Specially, when λ>0, the the-
orem can be proved similarly. The proof is completed.
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The model (SPλ) is closely related with the following 
problem (F1)

(F1) max Q y
C x
( )
( )

, (13)

s.t. ( , )x y S∈ . (14)

Firstly, the relationship of model solutions between 
models (SPλ) and (F1) is given by Lemma 1. Further-
more, we investigate the properties of the model (SPλ).

Lemma 1. If λ* is the optimal value of the objective 
function of the problem (F1), then we have
i) ƒ(λ) is a convex, piecewise linear and decreasing 
function with respect to λ≥0;
ii) If ƒ(λ)=0, then λ=λ*;
iii) The optimal solution of (SPλ*) is identical to that 
of (F1).
For the proof of Lemma 1, readers may refer to Ref. 
[20]. Lemma 1 will be helpful for the proof of Property 
1 to 3.

Property 1. If ( ( ), ( ))* *x yλ λ  is the optimal solution of 
(SPλ), then
i) Q y( ( ))* λ  and C x( ( ))* λ  are decreasing with λ≥0;
ii) Q y C x( ( )) ( ( ))* *λ λ  is increasing with λ λ∈[ , ]*0 , 
and λ λ λ λ≤ ≤Q y C x( ( )) ( ( ))* * * ; it is decreasing with 
λ λ∈ +∞[ , )* , and Q y C x( ( )) ( ( ))* * *λ λ λ λ≤ ≤ .

Proof. 
i) For 0≤λ1<λ2, from the optimality of ƒ(λ1) and 
ƒ(λ2), we have

Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ λ λ1 1 1 2 1 2− ≥ −  (15)

Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ λ λ2 2 2 1 2 1− ≥ −  (16)

Rearranging inequality (15), 

Q y Q y C x C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ λ1 2 1 1 2− ≥ −   (17)

Adding (16) to (15) yields 
( ) ( ( )) ( ( ))* *λ λ λ λ2 1 1 2 0− −  ≥C x C x . Since λ2 -λ1>0, 
we obtain C x C x( ( )) ( ( ))* *λ λ1 2≥ . From (17) it fol-
lows Q y Q y( ( )) ( ( ))* *λ λ1 2≥ . Thus, both Q y( ( ))* λ  and 
C x( ( ))* λ  are decreasing functions of λ≥0.
ii) According to (i) and (ii) of Lemma 1, when λ≤λ*, 
we have ƒ(λ)≥0, i.e. Q y C x( ( )) ( ( ))* *λ λ λ≥ . Thus, we 
obtain λ λ λ λ≤ ≤Q y C x( ( )) ( ( ))* * * . When λ≥λ*, we 
have ƒ(λ)≤0, i.e. Q y C x( ( )) ( ( ))* *λ λ λ≤ . By the defini-
tion of λ*, we have Q y C x( ( )) ( ( ))* * *λ λ λ λ≤ ≤ . When 
0≤ λ1 < λ2 ≤λ*, we obtain the following inequality by Eq. 
(16) Q y Q y C x C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ λ1 2 2 1 2− ≤ − 

≤ − 
Q y
C x

C x C x
( ( ))
( ( ))

( ( )) ( ( ))
*

*
* *λ

λ
λ λ2

2
1 2

. Arranging that in-

equality, we thus have Q y
C x

Q y
C x

( ( ))
( ( ))

( ( ))
( ( ))

*

*

*

*

λ
λ

λ
λ

1

1

2

2

≤ . There-

fore, Q y C x( ( )) ( ( ))* *λ λ  is increasing with λ λ∈[ , ]*0 . 
When λ*≤ λ1 < λ2, the result could be proved similarly. 
The proof is completed.

From Property 1 (ii), we know that the PFVC first 
increases and then decreases with λ∈ +∞[ , )0 . 
When λ=λ*, the PFVC takes the maximum λ*. When 
λ λ∈[ , ]*0 , λ and λ* are the lower bound and upper 
bound of the PFVC, respectively. When λ λ∈ +∞[ , )* , 
λ* is the upper bound of the PFVC, what is the lower 
bound? Property 2 gives the answer as below.

Property 2. There exists a constant λ0≥λ*, when 
λ>λ0, we have
i) Q y Q y( ( )) ( ( ))* *λ λ= 0 , C x C x( ( )) ( ( ))* *λ λ= 0 , 
Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ= 0 0 ;
ii) The optimal solution of (SPλ) is identical to that 
of (SPλ0

).
Proof.

i) Firstly we prove a relaxed version, namely, there 
exists a constant λ0>0 satisfying (i). This property is 
proved by the contradiction method.
Suppose that there is no such constant λ0>0 satisfy-
ing C x C x( ( )) ( ( ))* *λ λ= 0  for any λ>λ0. Then there exists  
λ1>λ0 such that C x C x( ( )) ( ( ))* *λ λ1 0≠ . According 
to Property 1 (i), we have C x C x( ( )) ( ( ))* *λ λ1 0< . 
In a similar manner, there exists λ2>λ1 such that 
C x C x( ( )) ( ( ))* *λ λ2 1< .
In this way, an infinite sequence is generated, i.e., 
x n
* ( )λ , n = 0 1 2, ,  , such that C x n( ( ))* λ  is strictly 

decreasing. Since cj is an integer, we thus have 
C x C x C x nn n( ( )) ( ( )) ( ( ))* * *λ λ λ≤ − ≤ ≤ −−1 01  . So we 
directly conclude that lim ( ( ))*

n nC x
→∞

= −∞λ , which con-
tradicts with C x n( ( ))* λ ≥ 0 . 
Therefore, we get C x C x( ( )) ( ( ))* *λ λ= 0 . For λ>λ0, 
from the optimality of ƒ(λ) and ƒ(λ0), we have 
Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ λ λ− ≥ −0 0 ,
Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ λ λ0 0 0 0− ≥ − . 
Combining the above two inequalities leads to
Q y Q y( ( )) ( ( ))* *λ λ= 0 . Then it follows 
Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ= 0 0 . 
That is to say, PFVC keeps unchanged with λ λ∈ +∞[ , )0 . 
Recalling (i) and (ii) of Property 1, Q y( ( ))* λ  and C x( ( ))* λ  
are decreasing with λ≥0, thereby Q y( ( ))* λ0  and 
C x( ( ))* λ0  are the minimum with λ∈ +∞[ , )0 . Since 
Q y C x( ( )) ( ( ))* *λ λ  first increases and then decreas-
es with λ∈ +∞[ , )0  and Q y C x( ( )) ( ( ))* * * *λ λ  takes the 
maximum λ*, we know that Q y C x( ( )) ( ( ))* *λ λ0 0  is the 
lower bound of PFVC with λ λ∈ +∞[ , )* . Obviously, we 
obtain λ0≥λ*.
ii) From (i) above, when λ>λ0, 
Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ λ λ− = −0 0 . So the 
optimal solution of (SPλ0

) is also that of (SPλ) and vice 
versa. The proof is completed.

Property 2(i) gives the lower bound of PFVC when 
λ λ∈ +∞[ , )* . So far, we have obtained the upper and 
lower bounds of PFVC with λ≥0.

From Property 1 and 2, we know that PFVC first in-
creases, then decreases and then remains unchanged 
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with λ≥0. We wonder whether there are some character-
istics of the solution when the highest PFVC is achieved? 

Property 3. The optimal solution of (SPλ*) is given by 
a single open P&R facility that offers the highest PFVC.

Proof. According to (iii) of Lemma 1, we know that 
the optimal solution of (SPλ*) is identical to that of (F1). 
With only one facility located at j, let the objective func-
tion value of problem (F1) be z(j), and z j Q Cj j( ) = , 
where Qj and Cj are the corresponding passenger flow 
volume and building cost. Repeat for j J=1,..., , and 
reorder the indices so that z z z J( ) ( ) ( )1 2≥ ≥ ≥ . 
Next, consider the problem with sites 1 and 2 open. 
Let z Q Q C C( , ) ( ) ( )1 2 1 2 1 2= + +  denote the objective 
function value of problem (F1), where Q1, Q2 and C1, C2 
are respective coverage contributions and invest-

ments. It is clear that z
Q
C
Q
C

( ) max ,1 1

1

2

2

≥








. In addi-

tion, we know that max ,
Q
C
Q
C

Q Q
C C

1

1

2

2

1 2

1 2








≥

+
+

. Thus, we 

have z(1)≥z(1,2). Using an inductive approach, we 
could show that max PFVC cannot exceed z(1) for any 
combination of open sites. The proof is completed.

4. APPLICATION EXAMPLE

The above bi-objective programming model is ap-
plied to site P&R facilities in Anaheim, California, which 
is shown in Figure 1. The Anaheim network consists of 
38 areas, and each of them is represented by the sym-
bol ‘○’ with a number. These positions are also selected 
as the potential sites for P&R facilities. Travel demand 
data of each area are obtained from the homepage of 
traffic network testing problem [21], see Table 1. The 
distance information could be obtained from Figure 1. 
The construction cost data of locating P&R facilities as-
sumed in this paper are shown in Table 2. We use the 
Lingo software to solve the model (SPλ). The consuming 
time is so little that it can be negligible. Here, parame-
ter E is set large enough so that the area demand is al-

ways covered by P&R facilities, but it declines with the 
distance. Other parameter values are set as α=3(km) 
and β=0.2. Note that we set α here to show the effect 
of spatial equity constraints. Since the change of α 
does not lead to general conclusions, we will not do 
sensitivity analysis about parameter α.

Table 1 – Input data of the area demand

i ai (person) i ai (person)
1 7,075 20 504
2 9,663 21 2,642
3 7,669 22 1,524
4 12,174 23 1,523
5 2,587 24 376
6 6,577 25 8,554
7 7,137 26 2,975
8 722 27 548
9 2,238 28 2,083
10 149 29 1,145
11 486 30 2,936
12 488 31 3,639
13 37 32 2,058
14 125 33 1,783
15 407 34 5,322
16 249 35 1,965
17 648 36 933
18 2,869 37 338
19 1,038 38 1,512

Table 2 – Input data of the construction cost of P&R facilities

j cj (104 $) j cj (104 $)
1 220 20 430
2 620 21 420
3 500 22 360
4 520 23 370
5 560 24 370
6 480 25 360
7 570 26 300
8 600 27 414
9 544 28 428
10 492 29 390
11 526 30 396
12 460 31 378
13 442 32 352
14 380 33 350
15 360 34 360
16 410 35 360
17 410 36 396
18 332 37 240
19 456 38 290

 

1

2

3

4

5

6

7

8

9

11

12

13

SR-91

SR-22

SR-55

I-5

SR-57

14

18

35 34 33 32

36

19

20

21

37

23 24

25

10

38 26

28

27

16

17

31 30

15

29

22

Figure 1 – Anaheim network
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The location results of P&R facilities are shown in 
Table 3 when parameter λ takes different values. As can 
be seen from Table 3, when λ≥0, ƒ(λ) is a decreasing 
function. In this case, when λ*=134.3, we have ƒ(λ*)=0; 
when λ=λ*=134.3, the optimal solution ( ( ), ( ))* * * *x yλ λ  
of the model (SPλ*) is the same with that of model (F1). At 
the same time, Q y C x( ) ( )* *  reaches the maximal val-
ue 134.3. We can also observe that Q y C x( ) ( )* *  first 
increases, then decreases and then keeps unchanged 
with λ∈ +∞[ , )0 . When λ∈[ , . ]0 134 3 , the inequality 
Q y C x( ) ( )* * ≥ λ  always holds. When λ∈ +∞[ . , )134 3 , 
Q y C x Q y C x( ( )) ( ( )) ( ( )) ( ( ))* * * *λ λ λ λ≥ 0 0 , where λ0 can 
be set to 150. When λ>λ0, Q(y*), C(x*) and the optimal 
location of (SPλ) remains unchanged. The upper bound 
of the PFVC is λ*=134.3 with λ∈ +∞[ , )0 . These results 
support Lemma 1, Property 1 and 2 in Section 3. In ad-
dition, the optimal location of (SPλ*) is given by a single 
open P&R facility 37 offering the highest PFVC, which 
verifies Property 3.

Figure 2 shows the effective solutions of the mod-
el (BP) and the trade-offs related with PFV, PFVC and 
cost. These effective solutions (Pareto optimal solu-
tions) form the Pareto frontier, represented by the 
curve marked by a dash line. It reflects the trade-off 
between the coverage goal and the cost goal. As can 
be seen from Figure 2, the two goals are conflicting. 
The rightmost point of Figure 2 yields the largest vol-
ume, and also most cost. From the slope of the Pare-
to frontier, the right two solutions may not be favored 
by the decision makers, since a large number of con-
struction costs only brings a small increase in volume. 

Then, the trade-offs associated with PFV, PFVC and 
cost should be carefully investigated. Since the PFVC 
can be used as an index of evaluating the return of in-
vestment, it is necessary to take the PFVC into the de-
cision process. The trade-off between PFVC and cost, 
is represented by the curve marked with a real line, 

see Figure 2. Along with the increase in coverage and 
construction cost, the PFVC first increases and then 
decreases. Although the three points on the left side 
of the two figures are close to or reach the maximal 
PFVC, their location results are only one parking lot to 
build in the Anaheim network, which is impossible in 
reality. Thus, the decision makers could select from 
the rest four options, which corresponds to cases λ=3, 
6, 12, and 25, respectively. 
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Figure 2 – Effective solutions of the model (BP) and the 
trade-offs related with PFV, PFVC and cost

Figure 3 displays the locations for P&R facilities 
when λ=6. Figure 3(a) is the result by the model without 
spatial equity constraints. A total of 10 P&R facilities 
are located, whereas spatial clustering phenomenon 
is generated to some degree, as highlighted by the 
dashed ellipses. Figure 3(b) is the result of our mod-
el; there are 5 transfer facilities selected, the optimal 
deployment tends to be more spread-out due to the 
spatial equity constraints. 

Table 3 – Effects of Parameter λ on the locations of P&R facilities

λ Location Q(y*) C(x*) Q(y*)/C(x*) ƒ(λ)
0 1,2,3,7,9,12,25,28,30,35 89,253.5 4,458 20.0 89,253.5
1 1,2,3,7,9,25,28,30,35 89,013.4 3,998 22.3 85,015.4
3 1,2,3,7,25,30,35 86,616.3 3,026 28.6 77,538.3
6 1,3,4,25,31 82,826.5 1,978 41.9 70,958.5
12 1,3,4,38 78,992.5 1,530 51.6 60,632.5
25 1,33,37,38 72,225.7 1,100 65.7 44,725.7
50 33 44,960.5 350 128.5 27,460.5
128 37 32,221.3 240 134.3* 1,501.3
134.3* 37 32,221.3 240 134.3* 0
150 1 28,011 220 127.3 -4,989
160 1 28,011 220 127.3 -7,189
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  Figure 3 – Location results of P&R facilities (λ=6) 
 (a) Without the spatial equity constraints (6)  (b) With the spatial equity constraints (6)

5. CONCLUSION

P&R services are an integral element of public 
transportation system. Locating P&R facilities is an im-
portant step when planning for such services. Cover-
age and cost issues are two major concerns from eco-
nomic perspective. This paper develops a bi-objective 
programming model to account for P&R application 
specific objectives. The objectives are conflicting but 
integrated into one model. Moreover, the developed 
model addresses the issues of broad importance in 
location analysis in general, such as spatial equity and 
distance decay. This model is transformed into a single 
objective problem via the linearly weighted method. 
The concept of the passenger flow volume per cost is 
defined. Properties of solutions of the model are stud-
ied. Finally, this model is applied to the traffic network 
in Anaheim, California.

It should be pointed out that spatial equity in this 
paper is considered from the point of view that it may 
lead to inequity if the facilities are too close to each 
other. However, it does not mean that the greater the 
distance, the more fair the deployment. Further re-
search about spatial equity of P&R facilities should 
be discussed in the future. In addition, demand allo-
cation is based on the distance decay function in our 
paper. It is meaningful to take travellers’ route choice 
behaviour into consideration. Next, it is assumed that 
the capacities of P&R facilities are infinite in our mod-
el. In fact, the actual space of P&R facility has great 
impact on their spatial deployment and the travellers’ 
transferring choice [22]. It would be insightful to ex-
plore such capacitated P&R facility location models. 
Finally, the travel demand may fluctuate year by year. 
It is also interesting to study the P&R facility location 
problem under demand uncertainty [23]. 

ACKNOWLEDGEMENTS

The work described in this paper was jointly 
supported by Grants from the National Natural Sci-
ence Foundation of China (71261016, 71401050, 
31160253), the Program for New Century Excellent 
Talents in University (NCET-12-1016), and the Program 
for Young Talents of Science and Technology in Uni-
versities of Inner Mongolia Autonomous Region (NJYT-
12-B04). The authors would like to thank anonymous 
referees for their valuable comments and suggestions 
on an earlier draft of the paper.

卢晓珊 
合肥工业大学 
交通运输工程学院 
中国 合肥, 230009 
郭仁拥 
内蒙古大学 
计算机学院 
中国 呼和浩特, 010021

摘要 
 
空间公平性约束下停车换乘设施选址的双目标模型

一个带有空间公平性约束的双目标规划模型被建立，
用以研究交通网络中停车换乘设施的选址问题。决策变量
是换乘设施的数量和位置。最大客流覆盖和最少建设成本
这两个相互冲突的目标被同时考虑，用以权衡设施覆盖的
质量和成本。进一步地，单位成本客流量的概念被提出，
几个有关模型的解的性质被分析。最后，该模型被应用于
加州Anaheim市的换乘设施布局问题中。算例结果表明了
客流量，成本和单位成本客流量三者之间的权衡，以及空
间公平性约束对停车换乘设施空间布局的影响。

关键词

交通网络；停车换乘设施；双目标规划；空间公平性
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