
ABSTRACT

Effective bus travel time prediction is essential in tran-
sit operation system. An improved support vector machine 
(SVM) is applied in this paper to predict bus travel time and 
then the efficiency of the improved SVM is checked. The im-
proved SVM is the combination of traditional SVM, Grubbs’ 
test method and an adaptive algorithm for bus travel-time 
prediction. Since error data exists in the collected data, 
Grubbs’ test method is used for removing outliers from input 
data before applying the traditional SVM model. Besides, 
to decrease the influence of the historical data in different 
stages on the forecast result of the traditional SVM, an adap-
tive algorithm is adopted to dynamically decrease the fore-
cast error. Finally, the proposed approach is tested with the 
data of No. 232 bus route in Shenyang. The results show 
that the improved SVM has good prediction accuracy and 
practicality.
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1. INTRODUCTION

With the development of public transportation sys-
tem, the adoption of technologies such as bus track-
ing, location and communication has become popular. 
These technologies make it available to predict bus ar-
rival time at stops and help to provide reliable service 
in public transport. The passengers can enable effi-
cient scheduling of their trips using the available accu-
rate bus travel time prediction to avoid waiting times. 
The transit operators can take proper control actions 
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(stop-skipping strategy, holding strategy etc.) to adjust 
bus operation when the bus operation is interrupted 
using accurate bus travel times.

Usually, variable travel times on links and dwell 
times at stops make arrival time of transit vehicles at 
stops in urban transit networks uncertain. Especially 
when buses are disrupted by stochastic factors, such 
as traffic accidents, traffic jams, it is a tough task to 
predict the bus travel time. The past decades have wit-
nessed an increasing passion for the research of bus 
running time prediction. The literature focuses on time 
series [1] artificial neural network or support vector 
machine (SVM) [2-8] and Kalman filtering techniques 
[9, 10], etc.

The time series mainly rely on the similarity of the 
historical data and future data. The prediction result 
will apparently deviate with the variation of the his-
torical data. Besides, the application of time series 
leads to an obvious lag. The artificial neural network 
is good at dealing with non-linear planning problems. 
It has been used for prediction of bus travel time in 
the recent decades. However, considering the struc-
ture confirming of neural network algorithm and local 
convergence problems, the artificial neural network is 
not widely used [11, 12]. Kalman filtering technique 
can be accommodated with irregular variation. It is ef-
fective in single-step prediction but lacks in accuracy 
in multi-step prediction [13] .

Recently, SVM has attracted researchers’ atten-
tion as a new machine learning method. SVM was 
developed by Vapnik [14, 15], which is characterized 
by a specific type of learning algorithms. It has been 
successfully applied to solve some classic problems, 
such as incident detection [16], traffic-pattern recog-
nition [17], passenger head recognition [18], and trav-
el time prediction [7, 8, 19-21]. SVM is used to find 
regular pattern and makes use of them to analyse the 
unknowns. Based on collected statistics, SVM is avail-
able in small samples. As SVM has a strong capacity 
for learning, it is easy to make balance on data fitting 
and data generalization.

With the successful application of SVM, this paper 
proposes a bus travel time prediction model based on 
SVM. To predict travel times of links in an accurate and 
timely manner, it is essential to take the traffic condi-
tions, e.g. traffic congestion, etc., into consideration. 
Since traffic congestions are complicated and difficult 
to measure, the speed of preceding/current bus on 
links is used to consider traffic conditions of links [7]. 
Three kinds of information, route link, velocity, the ar-
riving time at a stop of former previous bus are input 
data to deal with some unexpected delays.

As the operation of a bus is sensitive to current traf-
fic conditions at the downstream part of the used road 
network, Grubbs’ test method is applied to eliminate 
the abnormal data from input data to avoid the devi-
ation of results brought by unreasonable data. Many 

procedures to discard outliers have been proposed, 
such as the Grubbs’ test [22, 23], the Tietjen-Moore 
test, and the Generalized Extreme Studentized Devi-
ate (ESD) test [24]. In a consecutive procedure like the 
one by Grubbs, only one observation at a time can be 
tested as an outlier. In the presence of multiple out-
liers, these procedures must be used repeatedly un-
til no further outliers can be detected. Tietjen-Moore 
test is a generalization of the Grubbs’ test to the case 
of more than one outlier. It has the limitation that the 
number of outliers must be specified exactly. ESD pro-
cedure is the recursive version of Grubbs’ test meth-
od. It requires only an upper bound on the suspected 
number of the outliers. Grubbs’ test is usually used to 
detect outliers in small samples where the number of 
outliers is unknown.

SVM can obtain several computing techniques, 
such as optimization theory, kernel functions, etc. 
With these auxiliary tools, some problems like small 
samples, non-linearity, high dimension and optimal in 
part, can be solved effectively [18, 25-28]. However, 
there will inevitably come to quadratic programming 
when the standard SVM progresses the optimization 
problem, especially with large training data and train-
ing online. To solve the problems of large calculations 
and low real-time conducted by the proposed factors, 
an adaptive algorithm is put forward to minimize the 
prediction error.

The adaptive algorithm can improve the training 
speed of the SVM method to a certain extent. In addi-
tion, there remains the advantage of simpliness. More-
over, the adaptive algorithm overcomes the problem of 
lacking of an appropriate support vector in a standard 
SVM [8, 29]. Yao et al. [30] applied the adaptive algo-
rithm to adjust the performance of SVM method. They 
confirmed that the adaptive algorithm is effective in 
the SVM improving programs. Based on equality con-
straint, Suykens and Vandewalle [31] proposed the 
least square support vector machines (LS-SVM). Us-
ing the Sheman-Morrison-Woodewalle equation, Chua 
[32] applied SVM in large samples. However, outcome 
data lacked stability. Depending on the LS-SVM, Yang 
et al. [25] proposed the adaptive algorithm. In their 
study, the approach can determine the number of sup-
port vectors.

Unlike previous studies, this paper focuses on 
bus travel-time prediction problem with an improved 
support vector machine. To make a better prediction 
performance, the proposed approach is combined 
with Grubbs’ test method, SVM and an adaptive algo-
rithm. However, there are also some limitations in this 
study. For example, the bus travel-time prediction of 
the target bus is less accurate in a specific link with 
increased bus traffic. 

This paper is further organized as follows. Section 
2 provides a brief introduction to improved SVM and 
explains the application of the Grubbs’ test method in 



S. Zhong et al.: A Hybrid Model based on Support Vector Machine for Bus Travel-Time Prediction

Promet – Traffic&Transportation, Vol. 27, 2015, No. 4, 291-300 293

data processing. Section 3 presents time prediction 
process with SVM and an adaptive algorithm to adjust 
the prediction results. Section 4 reveals results of a 
numerical test and analysis including performance 
evaluation of the proposed methodology. Lastly, the 
conclusions are stated in Section 5.

2. MODEl DEVElOpMENTS

In this paper, the improved SVM model, called 
SVMAA, is combined with a standard SVM model, 
Grubbs’ test method and adaptive filtering method. 
The structure of the modelling process is presented 
in Figure 1.

SVM testing

Feature extraction

Vector
quantification

SV data set

SVM
training

Grubbs’ test method

Adaptive method

Data collection

Test samples

Validation samples

Training samples

Performance

Figure 1 – Structure of the hybrid model

First of all, the needed data are collected with GPS 
technology and investigation. As not all of the data are 
effective in processing, the outliers among the sam-
ples are removed using the Grubbs’ test. Then, the 
effective data set is divided into three parts chrono-
logically: training samples, validation samples and 
test samples, of which the ratio is 70%, 20% and 
10%, respectively. The training samples and validation 
samples are employed to optimize the parameters of 
the SVM model, while the test samples are applied to 
verify the prediction performance of the model. Since 
not all the results of SVM testing are appropriate, the 
adaptive filtering method is adopted to select the per-
formance with large absolute error. The detail perfor-
mance will be introduced in the following sections.

2.1 Outliers detection and removal based 
on Grubbs’ test method

In this paper, the predicted bus travel time is pre-
dicted under the ordinary circumstance. Therefore, it 
is the key point to build a universal rule in the collect-
ed data set for bus running time prediction. However, 

considering the unexpected factors which happen in 
public transport in some circumstances, such as traf-
fic jams, bad weather, traffic accidents, etc., it will inev-
itably contain unexpected information, called outliers, 
which are beyond certain standard deviations (SD) 
from their respective means. As outliers in the data 
set may make a disturbance to the prediction accura-
cy, it is necessary to discard the outliers from the input 
data of SVM to avoid a disproportionate influence on 
data analysis although such outliers are sometimes 
important to the rational result, e.g. traffic accident 
identification.

Generally, the collected data can be divided into 
two categories, predictable and stochastic data. The 
predictable data are generated in ordinary circum-
stances as the input data of SVM in the bus travel-time 
prediction. The stochastic data are usually caused by 
artificial reasons and can be removed by the Grubbs’ 
test methods. It always results in a small amount of 
special numbers when the data sets are collected in 
the wrong way.

Grubbs’ test is based on the assumption of normal-
ity. That is, one should first verify that the data can 
be reasonably approximated by a normal distribution 
before applying the Grubbs’ test. Grubbs’ test detects 
one outlier at a time. This outlier is expunged from the 
dataset and the test is iterated until no outliers are de-
tected. However, multiple iterations change the prob-
abilities of detection, and the test should not be used 
for sample sizes of six or less since it frequently tags 
most of the points as outliers.

Moreover, when there is an accident in the route, 
the collected data of the traffic vehicle must be abnor-
mal. The congestion caused by an accident will disrupt 
the normal operation of the accident bus and its fol-
lowing buses subsequently. That situation is thought 
as another kind of congestion. Thus, the interference 
data should be removed in the data set. Since Grubbs’ 
test is simple and easy to apply, it is used to remove 
the outliers from the data set, assuming the distribu-
tion of bus speed on the predicted link is subjected to 
normal distribution during the studied periods. 

Grubbs’ test is defined for the hypotheses:
H0: There are no outliers in the data set;
Ha: There is at least one outlier in the data set.

The Grubbs’ test statistics is defined in Ram [33]:

G
Y Y

g
i L n i

= =
max -
, ,1 , (1)

where Y  and g denote the sample mean and standard 
deviation, respectively. The Grubbs’ test statistics is 
the largest absolute deviation from the sample mean 
in units of the sample standard deviation. This is the 
two-sided version of the test. The Grubbs’ test can be 
also defined as a one-sided test. To test whether the 
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minimum value is an outlier, the test statistics is:

G
Y Y
g

=
− min , (2)

where Ymin denotes the minimum value. To test whether 
the maximum value is an outlier, the test statistics is:

G
Y Y
g

=
−max , (3)

where Ymax denotes the maximum value. For the 
two-sided test, the hypothesis of no outliers is rejected 
at significance level a if:

G N
N

t

N t
a N N

a N N

>
−

− +
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( ) −

1
2
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2 2
2

,

,

, (4)

where ta N N2 2
2
( ) −,  denotes the upper critical value of the 

t-distribution with N−2 degrees of freedom and a sig-
nificance level of a/(2N). For the one-sided tests, re-
place a/(2N) with a/N.

2.2 Time prediction process with an adaptive 
algorithm 

After selecting the collected data before time pre-
diction, the SVM model is proposed to predict bus run-
ning time during the route links. As not all of the results 
of the SVM prediction are appropriate, the adaptive fil-
tering method is adopted to select the performance 
with large absolute error.

2.2.1 Support Vector Machines for regression

Given a set of data, points, x y1 1,( ) , x y2 2,( )… 
x ym m,( ) , xi  is the input vector, x X Rni ∈ ⊆ ; yi  is the 

desired value, y Y Rni ∈ ⊆ ; n is the number of training 
samples. SVM can map x to a high-dimensional space 
H with a non-linear mapping function ƒ( )x :

ƒ( ) ( )x x b= ω×ϕ + . (5)

where ϕ( )x  represents the high-dimensional feature 
spaces which are non-linearly mapped from the input 
space x. The coefficients ω and b are estimated by 
minimizing the regularized risk function:

2

1

1 1 ( ,ƒ( ))
2

n

i i
i

C N y x
n ε

=

ω + ∑ . (6)

In formula (6), the first term 1
2

2
ω , called regular-

ized term, is used to make the function as flat as pos-
sible, as well as to improve the controlling capacity. 

The second term 
1

1 ( ,ƒ( ))
n

i i
i

C N y x
n ε

=
∑  is an empirical 

risk function, which is defined with different loss func-
tion. To control the punishment of samples beyond the 
error, C is settled to satisfy the condition C>0. Figure 2 

presents the performance when applying ε (insensitive 
loss function). 

 

Observer
Predicted values 

Observer

ξ∗ Slack variable

ξ Slack variable

ε

ε

Y

X

Figure 2 – The parameters for the support vector 
regression

It is defined as follows for ( ,ƒ( ))i iN y xε :

( ,ƒ( )) max( ƒ( ) ,0)i i i iN y x y xε = − − ε . (7)

If ƒ( )i iy x− < ε , then ( ,ƒ( ))i iN y xε =0; or else, 
ƒ( )i iy x− >= ε , then ( ,ƒ( )) ƒ( )i i i iN y x y xε = − − ε . With 

the introduction of non-negative slack variables, ξ, ξ*, 
formula (6) can be described as:

min{ ( )}*1
2

12

1

ω ξ ξ+ +
=
∑C
n i i
i

n

, (8)

s.t. y x bi i i− − ≤ +ωϕ ε ξ( ) , (9)

ωϕ ε ξ( ) , , ,*x b y i ni i i+ − ≤ + =1 , (10)

ξi
* ≥ 0 . (11)

Function (8) is a convex quadratic optimization 
problem. With the introduction of Lagrange Function, 
the following will be obtained:

ω− − =
=
∑ ( )*a a xi
i

n

ii

1

0 . (12)

Therefore,

*

1

ƒ( ) ( ) ( ) ( )
i

n

i i
i

x a a x x b
=

= − ϕ ϕ +∑ . (13)

With the introduction of kernel function K x yi i( , ) , 
the formula (13) can be given in the following form:

*

1

ƒ( ) ( ) ( , )
i

n

i i
i

x a a K x x b
=

= − +∑ . (14)

Using the above mentioned kernel function, all 
necessary computations can be performed direct-
ly in the input space, without having to compute the 
map ϕ( )x . There are some popular kernel functions, 
the linear kernel K x y x yi i i j( , ) = ∗ , polynomial kernel 
K x y x yi i i j

r( , ) ( )= ∗ +1 , etc., where r are the kernel pa-
rameters. 
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2.2.2 adaptive algorithm 

By using the SVM model, the potential rule of bus 
travel is developed through historical data. Though the 
outliers are eliminated by the Grubbs’ test before per-
forming the SVM model, the real-time capacity of the 
model is weak as it is using an offline training pattern. To 
solve this problem, an adaptive algorithm is proposed to 
adjust prediction results of bus travel time dynamically. 

The adaptive algorithm introduces an adaptive 
factor, set as g (m) g mh h0 1≤ ≤( )( ) . It is gh(m) that is 
used to adjust the prediction results of bus running 
time by minimizing the covariance of prediction error. 
After real-time estimation, iterative update gh(m) and 
covariance of prediction error, the optimal value gh|(m)  
is obtained. Let th(m) indicate the real running time of 
bus m at route link h; let th(m)* indicate the predicted 
running time of bus m at route link h, which is adjusted 
by the adaptive algorithm [34]. The adaptive algorithm 
is given with the following equations: 

t m m t k m h mh h h h( ) ( ( )) ( ) ( )* * *g g ( 1)= − + −1 ∆ , (15)

t m
m

m m g kh
h

h h h

( )
( )

( ) ( ) ( )*
=

−
− + − −

ξ
ξ ξ

1
1 1 1

, (16)

∆h h hm t m t m( - ) ( ) ( )* *1 1 1= − − − , (17)

∆h h hm t m t m( - ) ( ) ( )*1 1 1= − − − , (18)

ξh hm E m( ) (( ( ) ) )* *− = −1 1 2∆ , (19)

ξh hm E m( ) (( ( )) )− = −1 1 2∆ , (20)

where gh(m) represents an adaptive factor; ∆h ( 1)m−  
and ∆h

*( 1)m−  indicate the error of travel time predic-
tion of bus m–1 at route link h with SVM model and 
an adaptive algorithm, respectively. ξh m( )−1  and 
ξh m( )*−1  indicate the covariance of error of predic-
tion running time of bus m–1 at route link h with SVM 
model and an adaptive algorithm, respectively.

2.2.3 The hybrid model of travel-time prediction

As the prediction performance of SVM model may 
include some unexpected results, this paper combines 
the SVM model and the adaptive algorithm to predict 
the bus travel time. It is called the hybrid model of time 
prediction, denoted as SVMAA. In this model, the tradi-
tional SVM model is used to predict bus deadheading 
time at certain stops. The arrival time of the current 
bus at a certain stop is calculated according to the 
deadheading time and the arrival time for the former 
bus. Then, the outcomes of arrival time are selected 
with the adaptive algorithm. Lastly, the bus running 
time is worked out after the selection. 

Among the variables that may contribute to the vari-
ation of bus travel, five input variables and an output 

variable are used in the SVM model. In this model d de-
notes the input variables, which consist of the five vari-
ables, the bus stop k (d1), the past second stop k–2 (d2), 
the departure time at stop k–2 for bus m–1 (d3), the 
departure time at stop k–2 for the objective bus m(d4), 
and the travel times of current segment k–2→k (d5). 
Let O denote output vector, the bus travel times on the 
route segment between two adjacent points. Variables 
d1, d2 are self-explanatory. The route segment variable 
identifies the section between the current stop and the 
next stop at which the arrival times are to be predicted. 
d3 and d4 are denoted as Tk

m
−
−
2
1  and Tk

m
−2  respectively. 

The deadheading time which is departure time interval 
between bus m and bus m–1 from stop k–2 can be pre-
sented as Tk

m
−2 –Tk

m
−
−
2
1 . It varies with different bus stops. 

Assume that there are stops numbered from the origin 
terminal through the destination terminal. Figure 3 de-
scribes variables d3 and d4 in more details.

m m-1

Stop k-2 Stop k

Tk-2
m-1

m m-1

Stop k-2 Stop k

Tk-2
m

Figure 3 – Illustration of d Tk
m

3 2
1

−
−( )  and d Tk

m
4 2−( )

Variable d5 refers to travel times at segment 
k–2→k for each former bus (bus m–1, bus m–2,…, 
bus m–r). Variable d5 is expected to estimate the traf-
fic conditions of the current segment. The latest travel 
times on the predicted segment will be updated after a 
bus finishes its travel on the predicted segment. When 
vehicle m reaches stop k–2, the input variables of d5 
at segment k–2→k are travel times of the former r 
buses at the segment, denoted by Vm–1,…,Vm–r, which 
are shown in Figure 4.

m m-1 m-r

Stop k-2 Stop k

Vm-1,…,Vm-r

… …

Figure 4 – Illustration of d V Vm m5 1− −( ), , γ

Using different kernel functions, one can construct 
different learning machines with arbitrary types of 
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decision surfaces. Let ˆ ( )ht m  express the prediction 
deadheading time of bus m and bus m–1 at stop k. 
Figure 5 shows the progress of ˆ ( )ht m  prediction with 
the SVM model. 

1
2

m
kT −
−

2
m

kT −

( 1)ht m− ( 1)hv m−

( 2)ht m− ( 2)hv m−



 

( )ht m n− ( )hv m n−

( )1 ,k x x

( )2 ,k x x

( ),nk x x

1 1,y a

2 2,y a

,n ny a

( )ĥt m

Figure 5 – Progress of SVM prediction

After the outcome of ˆ ( )ht m , let Tk
m  denote the ar-

rival time of a bus m at stop k. Then, Tk
m  can be calcu-

lated as follows:
-1 ˆ ( )m m

k k hT T t m= + . (21)

Using the adaptive algorithm, the prediction of the 
arrival time of bus at stop k is dynamically regulated. 
The progress of the adaptive algorithm is depicted in 
Figure 6. 

An adaptive algorithm

1m m n
k k kT T T+



1m m n
k k kT T T+′ ′ ′



Figure 6 – Progress of the adaptive algorithm

After regulation of the SVM model performance, 
the final outcome of bus arrival time at stop k is pre-
dicted, denoted as Tk

m′ . 

3. NUMERICal TEST

The presented model for bus travel-time prediction 
has been tested with the data of transit route No. 232 
in Shenyang City, China. The transit route goes from 

Ling North Street to the city center with 19 stops in 
total and 10.8 km per direction. In the numerical test, 
parts of the eastbound direction of the transit route are 
studied. Part of the routes and bus stops are selected 
to predict bus running time, which are representative 
stops on route No. 232, showed in Figure 7. The stops 
from Shenyang Station to Three Taizi are denoted as 
stop 1, stop 2, ..., stop 19, respectively. The length of 
each segment of No. 232 is described in Table 1. First, 
the data used in the models are described and then 
the results are obtained.

Table 1 – Configuration of transit route No.232

Route 
segment 1→2 2→3 3→4 4→5 5→6 6→7 7→8 8→9 9→10

Length (m) 435 441 1,000 214 619 380 1,100 540 352
Route 

segment 10→11 11→12 12→13 13→14 14→15 15→16 16→17 17→18 18→19

Length (m) 743 650 670 657 543 834 568 523 507

12

3

4
5

7

8

9

10

11

13

12

14

15

16
17

18

19

6

Figure 7 – Sketch scheme of test route No. 232
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3.1 Data collection and processing

In this research, the bus speed is used to reflect 
the traffic conditions of links at the current time. 
However, it is difficult to measure the speeds directly. 
Hence, the approximate speeds are calculated using 
the link lengths and travel time, as a substitute for the 
real speed on the corresponding links.

To obtain the data of travel times of links, we con-
ducted an on-board survey of all the No. 232 bus trips 
from October to November 2012. The collected data 
consist of the arrival times at 19 stops that are cov-
ered by the test beds in eastbound trip at peak period 
(6:30 A.M. – 7:30 A.M., PP) and off-peak period (10:00 
A.M., 11:00 A.M., OP) on weekdays. There are 994 val-
id trips within this approximate one-month period. Af-
ter calculating the approximate speeds on links, the 
data sets should be scaled. In the modelling process, 
the data sets are linearly scaled to the range from 0 
to 1 to ensure the validity of all data and avoid nu-
merical difficulties during the calculation. Before the 
procedure of model validation, group the speed data 
chronologically, using the first five weeks as sample 
data, 6th week and 7th week as the test set and 8th 
week as the forecasting set.

The data samples are divided into three parts: 
training samples (70%), validation samples (20%) and 
test samples (10%).

3.2 Model identification and results

The data can be mapped implicitly into a feature 
space and be enhanced quite efficiently by using a ker-
nel function. Radial Basis Function is selected as the 
kernel function in this study. There are three parame-
ters while using Radial Basis Function kernels: c, ε and 
γ, which are calibrated by grid-search. In grid-search, 

all pairs of c, ε and γ are tried and the one with the 
best performance is picked up. For the bus arrival time 
prediction problem, the three parameters are selected 
as (2–2 , 2–5 and 1.47). The process of the proposed 
prediction model is shown in Figure 7. This paper takes 
the average of absolute prediction error (MAPE) to test 
the accuracy of prediction results. MAPE can be de-
scribed as follows:

MAPE
J

t j t j
t j

d d

d
j

J

=
−

×
=
∑1 100
1

( ) ( )

( )
%



, (22)

where J is the number of test sample. td(j) and t jd ( )
stand for the actual travel time and predicted travel 
time of sample j, respectively. 

The predicted arrival time at the six bus stops of bus 
No. 232 in a weekday is shown in Figure 8. The predicted 
performances of the off-peak and peak time are com-
pared in Figure 8 as well. The performance in Figure 8 
reflects that MAPE of most stops are below 10%, which 
means the proposed approach has good prediction 
accuracy. It is interesting to find that the MAPE of pre-
dicted performance is decreasing from the first re-
search stop (the north Shenyang station) to the last one 
(Songling cultural). The stop with large prediction error 
is the north Shenyang station. The main reason for the 
above problem is that the north Shenyang station is the 
second stop of the east-bound bus route. The prediction 
of bus travel time at the north Shenyang station is lack-
ing in input data of the bus running time on the former 
route link, which results in a lower prediction accuracy.

However, a larger MAPE is shown in Figure 8 at the 
peak time prediction. The average MAPE in the peak 
time is about 10.7%, while MAPE at off-peak time is 
9.5%. Some bus stops with large passenger inter-
changes, such as the second province hospital and 
the Experimental Middle School, have large MAPE. 
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Figure 8 – Prediction results of bus arrival time at main stops 
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This is because the use of the speed of previous bus-
es at the second province hospital segment and the 
fourth hospital segment cannot effectively describe 
the current traffic condition since there is traffic con-
gestion during the peak time. However, the average 
MAPE is still around 10%, which means that the pro-
posed model can be used for bus travel-time predic-
tion during peak time. 

To prove the superiority of the proposed approach 
(SVMAA), we compared the predicted bus travel time 
(at the off-peak time) with the prediction results of-
fered by other three models: time series model, neural 
network model and SVM model. Methods and param-
eter settings of the three models have been adopted 
in literature. After computing the bus running time of 
each objected stop with the four different models, the 
average prediction errors (MAPE) of each model are 
shown in Figure 9. 

Figure 9 describes that MAPE of SVMAA model in 
five stops is lower than the other three models ex-
cept for the Shenyang station as lack of information. 
Taking account of the historical data and without the 
real-time information of a running bus, MAPE of pre-
dicted results of time series model and neural network 
model are the largest. Both of the SVM model and 
SVMAA model have better prediction accuracy as they 
are based on structural adventure and the VC dimen-
sionality theory which is a measure of the capacity of 
a statistical classification algorithm [35]. SVM can de-
crease the predicted errors with good capacity of sam-

ples. Compared with SVM, the performance of SVMAA 
is better with the introduction of Grubbs’ test method 
and an adaptive algorithm. The Grubbs’ test method 
eliminates the outliers so as to obtain a better input. 
Finally, an adaptive algorithm will adjust the predicted 
result with the real-time information of the correspond-
ing bus travel time. 

4. CONClUSIONS

It is hard to predict the bus running time accurate-
ly as the condition of bus operation is full of stochas-
tic events. For the use of SVM a specific function is 
not needed, since SVM can reflect the relationship in 
non-linear and the real-time system of input and per-
formance. With a good learning capacity, the SVM is 
suitable to predict bus travel time. Considering the 
real-time bus travel-time prediction, the Grubbs’ test 
method is used to select the outliers. Besides, an 
adaptive algorithm is applied to real-time adjustment 
of the test result of prediction. Lastly, this paper takes 
the data of bus route No. 232 in Shenyang to test the 
proposed approach. The test consequence shows that 
SVMAA can predict bus travel time efficiently. In addi-
tion, to simulate road traffic conditions, the data of bus 
velocity in the test bus route are selected; it will give 
rise to a great prediction error for the bus with lower 
frequency. In the future research, the data of bus ve-
locity of buses on multi-routes will be adopted to simu-
late road traffic conditions. 
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摘要 
 
应用基于支持向量机的混合模型进行公交车运行时
间预测

在公共交通系钟中有效的钟行时钟钟钟十分重要。钟
了钟钟公交钟钟行时钟本文提出了一种改钟的支持向量机
钟钟模型，并对钟方法的有效性钟行了钟钟。改钟的支持
向量机模型钟合了钟钟支持向量机模型、格拉布斯钟钟方
法和公交钟行时钟钟 钟的自适钟算法。由于钟钟 钟差主要
来源于数据钟入，在钟用钟钟支持向量机模型之前，本文
采用格拉布斯钟钟方法来剔除异常数据。另外，钟了减少
历史数据在不同的钟钟 钟段对钟钟支持向量机钟钟 钟果的
影响，本文引入了自适钟算法来动钟地减少钟钟钟差。最
后，本文用沈阳市232公交钟路的数据钟行模型钟钟。钟
钟钟果表明改钟的SVM具有钟好的钟钟准确性和实用性。

关键词

公交钟钟行时钟钟钟；支持向量机；格拉布斯钟钟方法；
自适钟算法 ；
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