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COMBINATORIAL NEURAL NETWORKS BASED MODEL  
FOR IDENTIFICATION OF  

MARINE STEAM TURBINE CLUSTERED PARAMETERS

ABSTRACT

This paper presents a combinatorial model for the iden-
tification and simulation of a certain number of parameters 
of marine steam turbine plant for LNG tankers based on the 
classification and approximation neural networks. The mod-
el consists of two basic parts. In the first part, parameters 
are classified in adequate clusters by means of self-organiz-
ing neural network, while the combinatorial identification of 
clusters interrelationship is carried out in the second part by 
means of static feed-forward neural networks. In the follow-
ing part, the successfulness of the achieved results is ana-
lyzed by generating an adequate rank-list of all identifica-
tion-simulation models. This approach gives a clear insight 
into certain cluster interdependences which can significant-
ly contribute in following applications which are based on 
the estimation and prediction of the lost sensor information 
not depending on the cause of their loss. Although all of the 
above is distinctly expressed in marine propulsion control 
systems, it should be pointed out that in this way significant-
ly increased reliability and redundancy of the sensor infor-
mation directly reflect on considerable increase in technical 
security of the whole ship as a floating object.

KEY WORDS

marine steam turbines, marine control systems, neural net-
works, identification, clusterization

1.  INTRODUCTION

Problems closely related to redundancy, reliability 
and safety of marine control systems are particularly 
emphasised considering the operating environment 
they are set in. The ship has always presented a spe-
cific environment in which many factors that affect 
steady and reliable functioning within certain marine 
subsystems are intertwined. Navigational systems, 
as far as safety and manoeuvring abilities of the ship 
are concerned, are important to the same extent as 

her propulsion systems. Although this primarily refers 
to the main engine, complexity of all marine engine 
room subsystems and their mutual interaction make 
this control system an exceptionally complex one be-
cause it is conditioned by high efficiency degree, reac-
tion time, reliability and safety along with low tolerance 
threshold.

Current and future levels of automatic control op-
timize marine propulsion systems more and more, so 
that we witness daily a general trend of decrease in the 
number of crew members. While the ship owner sub-
stantially cuts back on costs considering crew mem-
bers, on the other hand the shortage of qualified and 
trained crew must be recompensed by systems which 
are significantly increased in redundancy, adaptability, 
reliability and safety.

Because of these reasons, one of possible solu-
tions for increasing redundancy of sensor information 
in marine propulsion system, which is based on ap-
plication of computer intelligence, is proposed in this 
paper. Primarily, in this manner, the quality support in 
form of knowledge base that can be used for solving 
a whole range of problems from identification and es-
timation to predicting sensor information is achieved.

A whole range of papers in the last couple of 
years has been dedicated to the identification of 
control system parameters by using computer intel-
ligence. In this area, mostly those papers which offer 
solutions for an estimation of lost sensor information 
[1], [2], [3], [4], [5] stand out as well as those pa-
pers which expand these approaches using function 
analysis of single sensors and their malfunction de-
tection [2], [5], [6], [7], [8]. Authors in [5], [9], and 
[10] also provide an insight into the interaction be-
tween monitoring and application of the aforemen-
tioned approaches. Large majority of papers dealing 
with this area is based on approximate possibilities 
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of computer intelligence algorithms with the goal to 
recompense the lost sensor by using a specific num-
ber of observed parameters. Certain generalizations 
of such models are provided by authors in [4] and 
[11], and one of these generalizations will also be 
suggested in this paper.

In order to make the identification of a certain sub-
system as reliable and correct as possible, it is essen-
tial to process the samples of analyzed parameters, 
to clear all the background noise, and even, if neces-
sary, to organize them into certain classes according 
to some characteristic features. Dealing with the appli-
cation of artificial neural networks for those purposes, 
self organizing neural networks should be singled out 
as one of the most commonly used methods [1], [12], 
[13], and [14].

One of possible approaches in improving iden-
tification results of marine control systems is sug-
gested in this paper. The suggested model consists 
of two parts where the second part relies directly on 
the first part, and it is basically composed of func-
tion parameter clusterization and their identification. 
Specifically, by using self organizing neural network, 
the chosen parameters can be promptly and simply 
classified into certain clusters according to their com-
mon features [12], so it is to be expected that the 
identification of the dependence between these ob-
tained clusters should yield more satisfactory results. 
At the same time, in order not to dwell on classical 
fusion of sensor information, i.e. on the principle by 
which one sensor is replaced by a certain number 
of sensors functioning together interactively, a com-
binatory approach has been introduced which allows 
us to assess the successfulness to identification of 
any cluster group from any other cluster group re-
maining. This finally enables a choice of the most ef-
ficient identification-simulation model, which mostly 
depends, namely, on the problem which needs to be 
resolved.

The second part of this paper presents theoretical 
characteristics and description of the model, while the 
third part presents its validation. For that purpose the 
chosen function parameters of marine steam engine 
have been used. For the clusterization of system pa-
rameters Kohonen’s self organizing neural network 
was used, while back propagation neural networks 
were used for the combinatory identification of the 
clusters. The assessment of successfulness of indi-
vidual identification-simulation models was carried out 
by using classic statistics methods, mean squared er-
ror and linear regression. As a computer backup while 
training, validating and testing neural networks, a PC 
of standard characteristics (Dual Core 2.6 GHz, 3.25 
GB RAM) was used, along with MATLAB R2008b soft-
ware package installed on 32-bit operating system MS 
Windows XP.

2. COMBINATORIAL MODEL OF CLUSTER 
PARAMETER IDENTIFICATION 
BASED ON NEURAL NETWORKS

Let us denote with , , ,X x x xR1 2 f= " , set of R pa-
rameters of some system and if Q  states of that sys-
tem are known, where every state is described by an 
adequate sample, then the space of those states can 
be written in matrix form
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Problems of system theory often demand deter-
mining the interdependence of some system’s param-
eters. So theoretically, in the system with R parame-
ters, l  of them can be expressed through m R l# -  
parameters in

N R
l
2 1l
R l$= -
-e ^o h (2)

ways.
The technical problems are most commonly re-

duced to determining one parameter’s dependence 
l 1=^ h on a certain number of the remaining ones 

[17], [18]. For this purpose, let us denote xi  as an 
arbitrary chosen parameter from the set X . It can be 
understood as a more variable function whose argu-
ments are elements of any r-member subset.

, , , \A x x x X xr i1 2 f 3= " ", ,, (3)
where , , ,r R1 2 1f= - , i.e.

, , , , , ,x F x x x x xi i i r1 2 1 1f f= - +^ h. (4)
But in the following model, we shall suggest that 

the parameters of the observed system first be clus-
tered into responding clusters. This way we shall avoid 
the problem area which is formed when the identifica-
tion of the system is carried out by randomly chosen 
parameters without predetermined connection be-
tween them, and on the other hand that will signifi-
cantly improve the results of identification.

For the purpose of clustering, a self-organizing Ko-
honen’s neural network (SOM) will be used, a network 
which is at the same time one of the most commonly 
used methods when it comes to clustering data by 
neural networks usage [15], [16].

The architecture of SOM network that follows the 
idea of the model presented in this paper is shown in 
Figure 1.

Input layer is presented with a matrix of all parame-
ter values whose format is Q R# , where Q  represents 
a number of stages noticed, and R a number of neu-
rons in the input layer. The number of neurons S1 in 
the competitive layer defines the dimension and the 
topology of the SOM network.

The characteristic of the competitive layer is mani-
fested in the fact that it can be used to classify a set 
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of incoming data, independent on a number of param-
eters, into a determined number of classes depend-
ing on the number of neurons in a layer. Neurons will 
be positioned in 2D topology which enables a visual 
presentation of distribution, but also a 2D topology ap-
proximation of a set of incoming data.

The training of the SOM network will be done by 
using SOM batch algorithm which characteristically 
reinforces the adaptation of the network after all of 
the samples have been presented to the network. 
The process of training is enforced iteratively until the 
network is stabilized. After the completion of training, 
the neighbouring neurons have similar values. Since 
SOM is a function which preserves metric character-
istics of a set of samples, network clustering is also 
a sample set clustering. Thus, in the input layer, we 
have again R of clustered classes in a shape of dis-
junctive subsets which in union make an entire set of 
input parameters.

The sets of clustered samples by which the identi-
fication of the system will be done, will be presented 
in the following text by output clusters. For this pur-
pose, a combinatorial approach with the basic idea to 
determine a whole range of interdependencies of any 
cluster or a group of clusters on any remaining set of 
data clusters will be used.

The identification of the clustered parameters of 
the system will be made by approximate two-layer feed 
forward neural network. In the hidden layer which con-
sists of S neurons, a sigmoid function is used as an 
activation one, while the linear function is an activa-
tion function of the output layer which consists of Q  
neurons. The architecture of the two-layer feed forward 
network that follows the model of this work is sche-
matically shown in Figure 2.

For the training of these networks the Levenberg-
Marquardt back propagation algorithm will be used, 
which has in many researches and analyses shown 

to be the algorithm that trains the network in the 
shortest possible time and brings it to a set goal from 
training, through validation and all the way to testing 
[15].

For purposes of rating successfulness of individual 
identification model classic statistics methods will be 
used, such as mean squared error (MSE) and linear 
regression (LR). MSE presents an average value of 
the sum of squared differences between referent and 
their corresponding calculated values. The smaller the 
MSE, the better is the realization of the approxima-
tion. On the other hand, the LR regression measures 
the correlation between referent and calculated val-
ues. LR values closer to one suggest an exceptionally 
strong correlation, whereas values closer to zero sug-
gest merely a coincidental connection of the values 
analyzed.

When it comes to combinatorial approach, the idea 
is as follows: achieved clusters will be combinatori-
ally sorted out by classes. This means that the cluster 
combinations of the first class will represent approxi-
mations of any particular cluster on other remaining 
clusters, combinations of the second class will rep-
resent approximations of any ordered pair of clusters 
on other remaining clusters, etc. Finally, the combina-
tions of j 1-^ h-th class will represent approximations 
of any ordered j 1-^ h-tuple on the remaining cluster. 
Symbolically, it can be written down as follows:

 – 1st class cluster combinations – j  combinations 
can be written as

, ,K f K K,
NN

j1 1 1 2 f= ^ h (5)

, , ,K f K K K,
NN

j2 1 2 1 3 f= ^ h (6)
  h

, , ,K f K K K,j j
NN

j1 1 2 1f= -^ h (7)
where f ,jNN1  is an approximate function, i.e. j-th neural 
network of the first class

 – 2nd class cluster combinations – j
2e o combinations 

can be written as
, , ,K K f K K,

NN
j1 2 2 1 3 f=^ ^h h (8)

, , , ,K K f K K K,
NN

j1 3 2 2 2 4 f=^ ^h h (9)
  h

, , , ,K K f K K K,j j j
NN

j1 2
2

1 2 2f=- -^ ^ch hm . (10)

If we continue to do this for a total of j 1-^ h times, 
the combinations of the j 1-^ h-th class, of which 
there is a total of j , can be written as

MS6 @Q#R

x1,x2,f,xR^ h

Matrix

of input

parameters S1

Competitive Layer

with      Neurons

Input

SOM K1

K2

h

Kj

Output

Clusters

Figure 1 - SOM network architecture

Source: authors according to [15]
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Parameter
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Figure 2 - The architecture of the two-layered feed-forward neural network

Source: authors according to [15]
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, , ,K K K f K,j j
NN

j1 2 1 1 1f =- -^ ^h h (11)

, , ,K K K f K,j j
NN

j1 2 1 2 1f = - -^ ^h h (12)
  h

, , ,K K K f K
,j j
j

j

NN
2 3 1

1
1f =

-
-

^ ^fh hp . (13)

All cluster combinations from the first to j 1-^ h-th 
class come to a total of

j j j
j1 2 1

2 2jf+ + +
-

= -e e eo o o . (14)

Since by increasing the number of clusters the 
number of all cluster combinations grows even more 
notably, we shall introduce notation for the purpose of 
monitoring more easily the individual combinations of 
a single class. So the combinations of the first class 
shall be marked with 1.1, 1.2, ..., 1.j, combinations of 

the second class with 2.1, 2.2, ..., 2. j
2e o, etc.

At the same time, each combination of each class 
undergoes an identification process based on neural 
networks, so it is practical to introduce a concept of 
identifying each single class. That way we could sche-
matically show each of 2 2j

-  identifications. For ex-
ample, we could schematically show the first f ,NN1 1^ h 
identification of the first class the way it is done in Fig-
ure 3.

, ,K Kj2 f^ h clusters are input into a two-layer feed-
forward network, and the values of K1 cluster are 
simulated. K1 cluster referent values and calculated 
values O1 are the basis for analysis of identification 
successfulness by using the aforementioned MSE 
and LP methods. After grading individual phases from 
training to testing, all the data that characterize this 
identification are written into archives for the purpose 
of further analysis. This relates to characteristic net-
work values and successfulness results.

also the obtained data are archived for the purpose of 
further examining and grading.

When all the identification processes of all classes 
and combinations are processed in the way we de-
scribed before, we are left with an archive of signifi-
cant information useful in more ways at our disposal. 
In marine control systems it can easily be transformed 
into a knowledge base and in this way it can be repeat-
edly helpful in increasing the safety, reliability and re-
dundancy of the system itself. This can include a wide 
spectrum of applications, from estimation of the lost 
sensor information, detection of faults and malfunc-
tions to supporting fuzzy system of process regulation 
or as an alternative and complement to the existing 
sensor systems [19], [20].

With statistic and/or optimization methods the 
optimal method can be easily determined between 
2 2j

-  identification models, considering the problem 
which needs to be resolved at a certain point.

3. MODEL VALIDATION AND ANALYSIS 
OF OBTAINED RESULTS

In the continuance of this paper we shall make 
a validation of the proposed model with the corre-
sponding analysis of the obtained results. For this 
purpose we will use a disposable set of data from 
a Kawasaki Heavy Industries marine steam turbine 
with a power of 28 MW at 83 min-1 on the propel-
ler axis. Among disposable data there were four tem-
peratures measured on turbine bearings, two on the 
front and two on the back side of the high-pressure 
part of the turbine, two axial shifts measured on the 
front side of high-pressure turbine and two relative 
vibrations measured on the back side of the high-
pressure turbine.

The readings have been chosen for two charac-
teristic time intervals. The first interval I1 represents 
a period during which LNG tanker gradually increases 
the number of revolutions and increases the nomi-
nal power from 30% to 80% of maximum load, which 
is equivalent to the increase of turbine power from 
8.5MW to 22.5MW. It definitely needs to be mentioned 
that during this interval the weather was calm without 
significant external disturbances such as wind, waves 
or sea currents.

Unlike the first interval, the second interval I2 was 
chosen during bad weather with significant exter-
nal disturbances. Along with a strong wind and high 
waves, the ship plunged on a few occasions, i.e. the 
ship’s propeller partially emerged above sea surface 
which, cumulatively observed, reflected on the opera-
tion of the turbine itself, and therefore reflected also 
on the parameters analyzed. The characteristics of the 
chosen measured parameters are concisely presented 
in Table 1.

K2,f,Kj^ h
Input Set

Two-layer

feed-forward

network
O1^ h

Output Set

K1^ h
Target Set Results of:

a) Training

b) Validation

c) Testing

analyzed by

MSE & LP

Archive

Figure 3 - Block-diagram for identification model 1.1

After the model of the first combination of the first 
class is completed, we move over to the second com-
bination of the first class. The procedure is identical to 
the one described before with the difference that the 
network is now presented with second combination 
clusters of the first class , , ,K K Kj1 3 f^ h and K2. Here 



Promet – Traffic&Transportation, Vol. 23, 2011, No. 1, 1-9 5 

P. Komadina, V. Tomas, M. Valčić: Combinatorial Neural Networks Based Model for Identification of Marine Steam Turbine Clustered Parameters  

3.1 Operating Parameters Clustering

Let us denote 
X T1FA, T1FB, T2BA, T2BB, ASA, ASB,RVA,RVB= " ,

as a set of R 8=  parameters of the steam turbine 
plant presented in Table 1.

Since in the first time interval I1 , 5,500Q1 =  read-
ings were chosen, that means that the input matrix will 
have a format of 5,500 8Q R1# #= .

For parameter clustering we use Neural Network 
Clustering Tool program module, as a part of Neural 
Network Toolbox of MATLAB R2008b software pack-
age.

The input layer consists of 8 neurons, competitive 
layer of 10 neurons and the output layer of 100 neu-
rons.

After the training phase which is based on Batch 
Unsupervised Weight/Bias learning method [15], 
the network is fully adapted. The visualization of the 
adapted weight coefficients which link every input vec-
tor with every neuron is the best indicator for possible 
correlations between input vectors, i.e. parameters of 
the input matrix. One such visualization for the first 
analyzed interval is shown in Figure 4.

Even by just superficially analyzing weight surfaces 
of the input vectors it is clear that there exists a strong 
correlation between certain parameters which we can 
divide into four clusters by two parameters, as follows:
K T1FA, T1FB1 = ^ h (15)

K T2BA, T2BB2 = ^ h (16)

K ASA, ASB3 = ^ h (17)

K RVA,RVB4 = ^ h. (18)
There is an almost identical situation with param-

eters of the second time interval I2. Although the ship 
and the power turbine and therefore the analyzed pa-
rameters were significantly influenced by external fac-
tors, an almost identical clustering of the parameters 
was obtained anyway. The only noticeable difference 
in relation to the first interval is a slightly less ex-
pressed correlation between parameters RVA (Input 7) 

and RVB (Input 8). But since we are dealing with rela-
tive vibrations, and at the same time bearing in mind 
the circumstances under which the second interval 
was chosen, the differences are not surprising. These 
differences are neglected in this paper because they 
represent the reason for implementing adaptive clus-
ter identification which is not a part of this paper but 
the one that will follow.

3.2 Identification of Parameter Clusters

After a successfully accomplished clusterization of 
parameters into four characteristic clusters, we shall 
define, for j 4= , combinations of 1st, 2nd and 3rd 
class, and their corresponding identification models. 
Thus we differ:

 – Cluster combinations of 1st class – 4 combinations
, ,K f K K K,

NN
1 1 1 2 3 4= ^ h (identification model 1.1) (19)

, ,K f K K K,
NN

2 1 2 1 3 4= ^ h (identification model 1.2) (20)

, ,K f K K K,
NN

3 1 3 1 2 4= ^ h (identification model 1.3) (21)

, ,K f K K K,
NN

4 1 4 1 2 3= ^ h (identification model 1.4) (22)
 – Cluster combinations of 2nd class – 6 combinations
, ,K K f K K,

NN
1 2 2 1 3 4=^ ^h h (identification model 2.1) (23)

, ,K K f K K,
NN

1 3 2 2 2 4=^ ^h h (identification model 2.2) (24)

, ,K K f K K,
NN

1 4 2 3 2 3=^ ^h h (identification model 2.3) (25)

, ,K K f K K,
NN

2 3 2 4 1 4=^ ^h h (identification model 2.4) (26)

, ,K K f K K,
NN

2 4 2 5 1 3=^ ^h h (identification model 2.5) (27)

, ,K K f K K,
NN

3 4 2 6 1 2=^ ^h h (identification model 2.6) (28)
 – Cluster combinations of 3rd class – 4 combinations
, ,K K K f K,

NN
1 2 3 3 1 4=^ ^h h (identification model 3.1) (29)

, ,K K K f K,
NN

1 2 4 3 2 3=^ ^h h (identification model 3.2) (30)

, ,K K K f K,
NN

1 3 4 3 3 2=^ ^h h (identification model 3.3) (31)

, ,K K K f K,
NN

2 3 4 3 4 1=^ ^h h (identification model 3.4) (32)
For each cluster combination of particular classes, 

the corresponding parameter identification has been 
made by means of a two-layer feed-forward neural net-
work in a way that was already described in 2. It only 

Table 1 - Characteristics of measured values of the chosen parameters

Measured value Variable Measure-
ment unit

Interval I1 Interval I2
Min. Max. Min. Max.

Temperature 1 of the bearing metal 1, front A T1FA °C 63.06 97.335 98.94 101.56
Temperature 1 of the bearing metal 1, front B T1FB °C 64.155 98.07 99.675 102.28
Temperature 2 of the bearing metal 1, back A T2BA °C 42.915 67.08 54.195 56.61
Temperature 2 of the bearing metal 1, back B T2BB °C 42.69 67.665 54.78 57.195
Axial shift A ASA mm -0.047 0.12 -0.019 0.258
Axial shift B ASB mm -0.055 0.112 -0.04 0.224
Relative vibrations shaft - turbine bearing A RVA μm 60.33 105.15 60.63 65.01
Relative vibrations shaft - turbine bearing B RVB μm 67.38 113.37 67.38 70.74
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needs to be added that all identifications were made 
with 30 neurons in the hidden layer.

In our specific case, since 4j = , we distinguish 
2 2 144

- =  different combinations because of which 
we had to identify the system 14 times. As a grade of 
successfulness of each individual model taken into 
consideration was a mean squared error (MSE) of train-
ing and testing, linear regression of training, validating 
and testing, time frame needed for all three phases, 
and the number of epochs, i.e. iterations needed for 
the network to reach the goal.

The network has by random choice distributed 
presented samples into samples for training (70% of 
samples), validation samples (15%) and testing sam-
ples (15%). In this way the possibility of deliberate data 
manipulation was avoided.

As an illustrative example, Figure 5 shows a graphic 
presentation of results obtained during training, valida-
tion and testing phases for the identification model 1.3.

Some models have proven as better ones, some 
as worse, but this was exactly the intention of this ap-
proach. All of the obtained grades of individual model 
successfulness for the first interval are shown in Table 
2. It definitely needs to be mentioned that the time 
time [s] relates primarily to time needed for training, 
i.e. training of neural networks of individual identifica-
tion models, and that the time needed for simulating 
new samples is incomparably faster.

3.3 Analysis of the Obtained Results

If we focus only on linear regression results, we 
can without doubt conclude that the clustering was 
a fully justified undertaking, because the correlation 
between referent and calculated values is extremely 
strong which in any case favours this approach.

To get in general a maximally clear and high-quality 
view of the results obtained, an idea of creating appro-
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Figure 4 - Surfaces of trained weight coefficients of the SOM network for 8 input parameters from the first time interval
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Best Validation Performance is 8.1728e-006 at epoch 110
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Figure 5 - Results obtained for the identification model 1.3 during training, validation and testing phases

Table 2 - Characteristic values for grading successfulness of the individual identification model in the first time interval

Identification 
model MSE – train MSE – test LR – all Time [s] Epochs/Iterations

1.1 0.36861 0.37643 0.99851 51 187
1.2 0.06167 0.06467 0.99944 89 324
1.3 0.0000068 0.0000087 0.99924 112 116
1.4 0.49567 0.61267 0.99745 49 164
2.1 0.67825 0.74444 0.99864 38 70
2.2 0.14672 0.15904 0.99995 318 303
2.3 0.70886 0.75314 0.99687 87 164
2.4 0.04875 0.06771 0.99997 64 126
2.5 0.52193 0.50575 0.99866 53 103
2.6 0.75815 0.33674 0.99976 206 401
3.1 1.09505 1.18560 0.99867 48 55
3.2 3.80743 3.69791 0.97814 133 120
3.3 1.91803 2.04981 0.99261 107 114
3.4 1.58997 1.79704 0.98418 91 136
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priate rank-lists of identification models imposes itself 
as a suitable solution considering their successfulness 
shown through the mean squared error of training and 
testing, as well as linear regression. If we cumulatively 
observed the successfulness of individual models by 
individual rank-lists, we would easily get one uniform 
rank list considering all three criteria. Table 3 in fact 
shows a rank-list of successfulness considering all 
three grading criteria at the same time.

From Table 3 it can be clearly noticed that the usual 
practice of simulation of just one parameter by using 
a certain number of the remaining ones is not the op-
timal choice at all. What’s more, simulation models of 
the 2nd class combinations have shown somewhat bet-
ter than 1st class models. Thus, in our case we could 
choose model 2.4 as the optimal identification-simu-
lation model, i.e. mapping of a set of 4 input vectors 
into a set of 4 output vectors. Even model 3.1 is by all 
characteristics above some 1st and 2nd class models, 
which clearly indicates that the possibility of simulat-
ing a larger number of outputs with a lesser number of 
input parameters, i.e. clusters, should not be thrown 
out.

4. CONCLUSION

Clustering of the marine propulsion system pa-
rameters can significantly contribute to the quality of 
identifying parameter clusters, while a combinatorial 
approach enables a choice of the optimal identifica-
tion-simulation model for determining dependence of 
one group of clusters on other group of clusters.

Change of conditions, i.e. internal or external fac-
tors which are characteristic for a ship and marine 
environment will cause changes in SOM weight coef-

ficients, so a different clustering of parameters is pos-
sible. Therefore, the identification-simulation models 
will also alter, which represents an adaptive optimiza-
tion, so that the control system, even in different sce-
narios characteristic for marine propulsion, can always 
have at its disposal the optimal model for possible es-
timation of the lost sensor information.

It also needs to be added that the presented model 
is relatively universal, and with slight modifications, it 
is surely easily applicable in other marine systems and 
their subsystems. That way it can significantly contrib-
ute to the quality, reliability and safety of marine con-
trol systems in general.

Further research should be oriented to the analysis 
of operating modes of marine steam turbines and af-
fliction of those modes to model adaptation. For that 
purpose, the application of dynamic adaptive optimi-
zation is recommended. The proposed model could 
be generalized for all operating modes with that ap-
proach. With adequate adaptive optimization tech-
niques the time for neural networks training could 
also be much shorter which should eventually result in 
acceleration of model adaptation process to changed 
operating conditions.
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SAŽETAK 
 
KOMBINATORNI MODEL ZA IDENTIFIKACIJU 
KLASTERIZIRANIH PARAMETARA 
BRODSKE PARNE TURBINE TEMELJEN NA 
UMJETNIM NEURONSKIM MREŽAMA

U radu je iznesen kombinatorni model za identifikaciju 
i simulaciju određenog broja parametara brodskog par-
noturbinskog postrojenja LNG tankera temeljen na kla-
sifikacijskim i aproksimacijskim neuronskim mrežama. 
Model se sastoji iz dva osnovna dijela. U prvom se dijelu 
parametri klasificiraju u odgovarajuće klastere pomoću 
samoorganizirajuće neuronske mreže, dok se u drugom vrši 
kombinatorna identifikacija međusobne ovisnosti klastera 
pomoću statičkih unaprijednih neuronskih mreža. U nas-
tavku se analizira uspješnost dobivenih rezultata uz generi-
ranje odgovarajuće rang liste identifikacijsko-simulacijskih 
modela. Na ovaj se način dobiva jasan pregled ovisnosti 
među pojedinim klasterima što može značajno doprinijeti 
u daljnjim primjenama koje su temeljene na estimaciji i 
predikciji izgubljenih senzorskih informacija neovisno o uz-
roku gubitka istih. Iako je sve navedeno posebno izraženo 
u brodskim sustavima upravljanja propulzijom, treba istak-
nuti da se na ovaj način značajno povećanje pouzdanosti i 
redundantnosti senzorskih informacija direktno odražava i 

Table 3 - Ranking list of successfulness of 
identification models by time intervals

Rank Interval I1 Interval I2 Intervals I1 and I2
1. 1.3 2.4 2.4
2. 2.4 2.1 1.3
3. 1.2 2.2 2.2
4. 2.2 1.3 1.2
5. 2.6 3.1 2.1
6. 1.1 1.2 1.1
7. 2.5 1.1 3.1
8. 1.4 2.3 2.5
9. 2.1 3.2 2.3

10. 3.1 3.3 2.6
11. 2.3 2.5 1.4
12. 3.4 3.4 3.2
13. 3.3 1.4 3.3
14. 3.2 2.6 3.4



Promet – Traffic&Transportation, Vol. 23, 2011, No. 1, 1-9 9 

P. Komadina, V. Tomas, M. Valčić: Combinatorial Neural Networks Based Model for Identification of Marine Steam Turbine Clustered Parameters  

na značajno povećanje tehničke sigurnosti cijelog broda kao 
plovnog objekta.
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brodske parne turbine, brodski sustavi upravljanja, neuron-
ske mreže, identifikacija, klasterizacija
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