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PREDICTION OF COMMUTERS’ DAILY TIME ALLOCATION

ABSTRACT

This paper presents a model system to predict the time
allocation in commuters’ daily activity-travel pattern. The
departure time and the arrival time are estimated with Or-
dered Probit model and Support Vector Regression is intro-
duced for travel time and activity duration prediction. Ap-
plied in a real-world time allocation prediction experiment,
the model system shows a satisfactory level of prediction
accuracy. This study provides useful insights into commut-
ers’ activity-travel time allocation decision by identifying the
important influences, and the results are readily applied to
a wide range of transportation practice, such as travel infor-
mation system, by providing reliable forecast for variations
in travel demand over time. By introducing the Support Vec-
tor Regression, it also makes a methodological contribution
in enhancing prediction accuracy of travel time and activity
duration prediction.

KEYWORDS
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1. INTRODUCTION

An individual’s daily activity-travel schedule is an
important determinant of the temporal pattern of traf-
fic demand. Understanding time allocation behaviour
is not only indispensable in the development of full-
scale model of daily activity-travel patterns but also
crucial in forecasting temporal variation in travel de-
mands and informing time-dependent transportation
policies and measures, such as flexible working hours
and real-time traveller information system [1, 2].

A daily activity-travel schedule includes all the
timing and duration of all the activities and trips in a
day. Since individuals have limited time, they need to
make joint decisions of the timing and duration of all
the trips in a day. However, timing and duration have
been largely treated separately in previous literature,
such as the report in [3], and many existing studies
only considered part of daily activity agenda, like the
one reported in [4]. Although the number of studies on
daily activity-travel modelling, which covers both tim-
ing and duration prediction, has seen considerable in-
crease in recent years, the accuracy of time prediction
is determined by the performance of a whole model
system, which usually includes activity pattern model
and mode choice model besides time allocation mod-
el as well. It is argued that an ad hoc time allocation
model may enhance the accuracy of timing and dura-
tion prediction.

This study is aimed at addressing the above issues
by developing a model system to predict the typical
daily commute activity-travel schedule, which includes
both timing and duration of daily activities and trips.
The reason for modelling commute time allocation is
that commute trips are one of the major causes of con-
gestion during the peak hours, e.g., according to the
travel survey data in Beijing (2005), over 32% of the
total trips during peak hours are commute trips [5].

The remainder of this paper is organized as follows.
In Section 2 a review on activity-travel time allocation
literature in general is presented. The data and the
conceptual framework of the model are described in
Section 3. This is followed by the model of travel de-
parture time and stop arrival time in Section 4 and the
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model of travel time and activity duration in Section
5. Prediction of a commute activity-travel schedule is
presented in Section 6. The paper closes with some
major conclusions and a discussion of future research
directions.

2. EXISTING LITERATURE

A number of studies investigated the timing for
a wide span of activities. For example, Bowman and
Ben-Akiva [6] predicted the departure time of individu-
al’s daily tours by using Multinomial logit (MNL) model.
Bhat [7] modelled the departure time of shopping trip
using an Ordered generalized extreme value (OGEV)
model. Small [8] constructed an MNL time alloca-
tion model for home-to-work morning departure time
choice. Small [9] compared MNL, OGEV and Nested
logit model in time of day modelling. As for duration
prediction, Bhat and Steed [10] estimated a Hazard
model of urban shopping trip durations. Juan and
Xianyu [11] predicted daily travel time using the Haz-
ard model.

Instead of analyzing the activity timing and dura-
tion separately, joint analysis can capture the interde-
pendence between timing and duration. Pendyala and
Bhat [12] used a joint discrete-continuous model to
investigate the relationship between maintenance ac-
tivity start time and activity duration. Other examples,
to name a few, are one report in [13] on work start
time and work duration, and another study reported
in [14] on relationship between commuting time and

Table 1 - Variables and statistics based on survey data

work duration, etc. Although these studies estimated
timing and duration jointly, they were concerned about
only part of the daily activity-travel pattern.

In recent years, several travel demand model sys-
tems have been developed to predict the entire daily
activity-travel pattern. For instance, Bowman and Ben-
Akiva [6] developed an activity-based travel demand
model system, which consisted of daily activity pattern
model, time allocation model, and mode choice model.
Kitamura et al. [15] presented a sequential simulation
approach to model daily activity-travel pattern, which
includes the type, duration, location and mode of daily
activities and trips. Guo and Bhat [16] constructed a
model system to predict both workers’ and non-work-
ers’ activity-travel patterns, including departure time,
activity duration, destination and mode choice. Since
these travel demand model systems jointly model time
decision, mode choice and activity pattern, the accu-
racy of time prediction is determined by the perfor-
mance of the whole model system. Therefore, instead
of modelling the daily activity pattern, travel mode and
time allocation with one model system, a separate
daily activity-travel time prediction model is developed
in this paper.

3. DATA AND MODELLING FRAMEWORK

3.1 Data

This study employs data from a large-scale daily
travel survey conducted in Beijing in 2005 [5]. The sur-

Variable Level Percentage (%) Variable Level Percentage (%)
1500RMB? 13.46 Male 50.96
Gender
1501-2500RMB 24.90 Female 49.04
2501-3500RMB 2418 Blue—collqr worke_r (manufacture, 42.44
construction, maintenance, etc.)

Income | 3501-5500RMB 23.92 Administration 3.48
5501-10000RMB 11.86 Occupation Education 30.29
10001-20000RMB 1.41 Services 9.19
20001-30000RMB 0.16 Health care 2.49
Over 30001 0.11 Other 12.11
Work? 81.80 Walking 46.52

Trip Maintenance 7.87 Bike 48.03

Mode

purpose | Entertainment 0.97 Bus 0.34
Other 9.37 Auto 5.11

Variable Mean Stapdgrd Variable Mean Stahdgrd

deviation deviation

Age 32.93 15.32 Distance (km) 2.81 3.42

1 RMB (Renminbi, also CNY or CN¥) is the official currency of China with 1RMB being equal to about $0.16;

2 It refers to going to school for students.
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vey area covered 16,410.54 square kilometres (cover-
ing all the 18 districts of Beijing), and the residing pop-
ulation of the study was about 11.8 million of people.
The survey sampled approximately 1.17% of the resid-
ing population. In addition to weekday OD informa-
tion, it also collected information regarding household
(size, car ownership, home location, monthly income
and mobility), individuals (age, gender, occupation and
driving license) and trips (departure time, arrival time,
purpose, mode sequence, and transit path, etc.). With
observations with missing values eliminated, the final
sample consists of 202,883 trip records of 138,480
commuters from 54,398 households.

Table 1 presents all the socio-demographic and
trip characteristic variables in the model, which have
proven to be important influences in time allocation
decisions in previous studies [3, 7, 17].

3.2 Analysis of the commute activity-travel
agenda

In general, the daily commute activity-travel pat-
tern (shown in Figure 1) is characterized by five differ-
ent (sub-)patterns:

a) Before-work pattern, which represents the activity-
travel undertaken before leaving home to work in
the morning;

b) Home-to-work commute pattern, which represents
the activity-travel undertaken during the morning
commutes;

c) Work-based sub-pattern, which represents the ac-
tivity-travel undertaken from work during daytime;

d) Work-to-home commute pattern, which represents
the activity-travel undertaken during the evening
commutes;

e) Post-work pattern, which represents the activity-
travel undertaken after arriving home at the end of
the evening commute.

Before morning commute pattern
Home-to-work commute

Work-based sub-tours

First stop

First stop

Work-to-home commute
Post home-arrival pattern

Figure 1 - Diagrammatic representation
of commuters' daily activity-travel pattern

Figure 2 - Key time and duration values
in daily activity-travel pattern

There may be more than one tour and also stops in
each pattern. However, in order to reduce the complex-
ity of the model, only the first tour in each pattern and
only the first stop in the home-to-work / work-to-home
commute pattern are modelled in this paper.

As shown in Figure 2 the key time and duration val-
ues in daily activity-travel pattern include:

(1) Travel departure time: departure time of before-
work tour (TDvefore), departure time of home-to-
work commute trip (TDhome-work), departure time of
work-based sub-tour (TDworkbased), departure time
of work-to-home commute trip (TDwork-home), and de-
parture time of post-work tour (TDpost).

(2) Stop arrival time: arrival time of home-to-work first
stop (SAnome-work) @and that of work-to-home first stop
(SAwork-home)-

Stop arrival time
choice model

Travel departure time
choice model

Activity duration
prediction model

Travel time
prediction model

TDoefore model SAnome-work model

TToefore model ADbefore & ADpost model

TDhome-work model SAwork-home model

TThomework model Athstop & Athstop model

TDwork-based model

TDwork-home model

TDpost model

TTwork-based model ADwork-based

TTwork-home model

TTpost model

Figure 3 - Commuters' daily schedule modelling framework
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Table 2 - Alternatives in the departure time and start time choice models

Alternatives
Model
1 2 3 4
TDvefore [3:00,6:00] (6:00,7:30] (7:30,9:00] (9:00,10:00]
TDnome-work [4:00,6:00] (6:00,7:30] (7:30,9:00] (9:00,11:00]
Travel departure . . . . . . R
time choice models TDwork-based [9:00,11:00] (11:00,13:00] (13:00,16:00]
TDwork-home [12:00,16:00] (16:00,17:30] (17:30,19:00] (19:00,21:00]
TDpost [18:00,19:00] (19:00,20:00] (20:00,23:00] -
Stop arrival SAnome-work [5:00,7:00] (7:00,8:00] (8:00,9:00] (9:00,11:30]
time choice models SAuwork-home [13:00,16:30] (16:30,18:00] (18:00,19:30] (19:30,21:30]

(3) Travel time: before-work travel time (TTpefore), hOme-
to-work travel time (TThome-work), travel time of work-
based sub-trip (TTworkbased), Work-to-home travel
time (TTworichome), @nd post-work travel time (TTpost).

(4) Activity duration: before-work activity duration
(ADbefore), home-to-work stop duration (ADhwstop),
work-based sub-activity duration (ADwork-based), WOrk-
to-home stop duration (ADwhstop), and post-work ac-
tivity duration (ADpost). The work (school) stay dura-
tion is not discussed in this paper, since generally
the daily work time and study time is eight hours for
most of the workers and students in China.

Then, the modelling framework is set up, which is
composed of four categories of models as shown in

Figure 3.

4. TRAVEL DEPARTURE TIME AND STOP
ARRIVAL TIME MODELLING

4.1 Alternatives in the models

In order to model the travel departure time and
stop arrival time, the continuous time was divided into
discrete time intervals. These alternative time intervals
are chosen by analyzing the distributions of travel de-
parture times and stop arrival times based on the sur-
vey data. Moreover, in order to analyze and predict the
pattern of time allocation in the peak periods, two spe-
cific alternatives were set, in the morning peak hours
(6:00 am- 9:00 am) and two alternatives in the eve-
ning peak hours (16:00 pm- 19:00 pm) for TDnome-work
and TDworkhome Model, respectively. Table 2 shows the
alternatives for five departure time choice models and
two arrival time choice models.

4.2 Ordered Probit model

As shown in Table 2, the alternatives in travel de-
parture time and stop arrival time choice models are
ordered time periods. Since MNL model, which is com-
monly used in discrete choice modelling, would fail to
account for the ordinal nature of the dependent vari-
able and have the problem of IIA (Independence from

irrelevant alternatives) [18], this study will employ Or-
dered multiple choice model for departure time and
arrival time modelling.

The Ordered multiple choice model assumes the
relationship:

J
D P(j)=F(a;-BiXn0),j=1,...)-1 (1),
j=1
and
J
P())=1->"R(})) 2)
j=1

where P, (j) is the probability that alternative j is cho-
sen as departure time of trip n(n = 1,...,N), @; is an
alternative specific constant, X, is a vector of the attri-
butes of trip n, S} is a vector of estimable coefficients,
and @ is a parameter that controls the shape of prob-
ability distribution F. Therefore, F can have various
shapes of distribution based on different value of 4.

The Ordered Probit model, which assumes stan-
dard normal distribution for F is the most commonly
used Ordered multiple choice model [19]. The Ordered
Probit model has the following form:

Pr(1) = Q(az-BiXn)
Pn(j) = q)(aj—Ban)—d)(aj_l—Ban),j= 2,..,J-1 (3)

P”(J)=1'§P”(j)

where R, (j) is the cumulative standard normal distri-
bution function. For all the probabilities to be positive,
we must have a1 < a2 < ... < a@,-1.

4.3 Estimation results

By using oprobit() function in Stata [20], both the
travel departure time and the stop arrival time choice
models are estimated and the results are shown in
Table 3.

The results indicate that the older the commuter,
the earlier the departure time of before-work trip,
while old people tend to depart later for both home-
to-work and work-to-home commute trips. Moreover,
older commuters are also found to make home-to-
work first stop later than younger commuters. Gender
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Table 3 - Estimation results of the departure time and arrival time choice models

Travel departure time choice models Séﬁzizgmdtg;e
Variables TDbefore TDhome-work TDwork-based TDwork-home TDpost SAhome work SAwork-home
Coef. | Z-stat. | Coef. | Z-stat. | Coef. |Z-stat.| Coef. | Z-stat.| Coef. | Z-stat.| Coef. | Z-stat.| Coef. | Z-stat.
Gender 0.17 | 1.62 | 0.09 | 5.17 | 0.10 | 1.03 | -0.06 | -3.75 | -0.27 | -2.86 | 0.06 | 2.64 - -
Age -0.03 |-5.43 | 0.02 | 26.83| -* - 0.01 | 9.03 - - 0.01 | 9.94 - -
Occupation - - -0.02 | -4.17 | -0.06 | -2.15 - - - - -0.02 | -2.59 | -0.01 | -1.64
Income -0.04 | -1.00 | 0.08 | 12.78 | 0.07 | 1.78 | 0.04 | 6.62 - - 0.12 |12.72| 0.05 | 5.66
Mode 0.16 | 1.95 | -0.11 |-10.40| -0.34 | -5.89 | 0.11 [10.72|-0.15 | -2.14 - - - -
Distance -0.13 | -2.36 | -0.03 | -9.92 | 0.05 | 2.48 | 0.02 | 7.69 | 0.09 | 2.29 - - 0.02 | 141
Trip purpose | -0.34 | -3.58 - - 0.30 | 4.42 - - 0.14 | 1.72 | -0.14 | -2.88 | 0.23 | 7.38
a1 -3.31 - -1.25 - -0.22 - -0.51 - 0.04 - -0.14 - 0.01 -
a2 -1.30 - 1.05 - 1.55 - 1.12 - 1.48 - 1.09 - 1.70 -
as -0.09 - 2.72 - - - 2.02 - - - 1.97 - 2.48 -
P value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N 517 18,615 612 19,032 638 8,751 9,726
Hit ratio (%) 60.54 64.52 66.01 56.96 57.21 49.08 59.35

1 All the “~” in this table denote that the independent variable is insignificant in the model.

affects the decisions of all the daily travel departure
times and stop arrival times except stop arrival time
of work-to-home pattern. Compared with women, men
tend to depart later for work-to-home commute trip
and post-work evening trip, while earlier for the other
four types of trips (stops). In addition, the travel depar-
ture times and stop arrival times get later for commut-
ers with higher income, except before-work departure
time, which moves up with the increase in commut-
ers’ income. According to the survey data, people with
higher income are older in general, and older people
are more likely to leave home earlier for before-work
morning activities, e.g., morning exercise. On the con-
trary, people with higher income are more flexible in
terms of working schedule than those with lower in-
come, which makes them have the luxury of leaving
home for work later.

As for the trip-related independent variables, trav-
el distance is proven to be significant for all the mod-
els except SAnomework model. For before-work morn-
ing trip and home-to-work commute trip, the longer
the travel distance, the earlier the commuter leaves
home. On the contrary, the longer the distance, the
later the work-based travel departure time, work-
to-home travel departure time, post-work travel de-
parture time and stop arrival time of work-to-home
pattern are. In addition, mode does not affect the de-
cision on stop arrival time, but has impact on choice
of travel departure time. The reason is that it is main-
ly the activity of the stop which leads to the stop that
decides the stop arrival time, while it is not only the
activity but also the travel time that affects the travel
departure time. Furthermore, since the mode has in-

fluence on travel time, then it has impact on travel
departure time.

The results also show that the higher the speed of
the mode, the later the before-work travel departure
and work-to-home travel departure times are; while
the higher the speed, the earlier the home-to-work
travel departure time, work-based travel departure
time and post-work travel departure times are.

5. TRAVEL TIME AND ACTIVITY DURATION
MODELLING

5.1 SVR model

As one of the Support Vector Machines (SVM)-
-machine learning methods analyzing data and recog-
nizing patterns, the Support Vector Regression (SVR)
is widely applied in building a regression model with
continuous dependent variable [21, 22]. We made the
first effort of introducing SVR in estimating the travel
time and activity duration.

Givenasetofinput-outputdata pairs (x1,y1), (X2,y2),
we (XY (XEXCS Ry € YCR", [ is the number of
training samples), that are randomly and indepen-
dently generated from an unknown function, SVM es-
timates the function using the following Equation [23]:
f(x)=w-O(x)+b w,xeR",beR" (4)
where @(x) represents the high-dimensional feature
spaces which are non-linearly mapped from the input
space x. Here w denotes a parameter vector and b is
the threshold [24]. If the domain of output space y
contains continuous real values, the learning problem
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then refers to SVR. Otherwise, if the interpretation y
only takes category values, i.e., -1 and +1, it denotes
Support Vector Classification (SVC) [25].

For SVR, the coefficients w and b in Equation (4)
can be estimated by the so-called regularized risk
functional:

MinJ = 3| P +C- Remp[ ] (5)

The first term 1/2|w |7 is called the regularized
term which is used as the measurement of function
flatness. The second term Remp|f ] is the so-called loss
function to measure the empirical error. C is regular-
ization constant to determine the trade-off between
the training error and the generalization performance.
Here, the e-insensitive loss function is employed to
measure the empirical error:

\y-f(x)|. = max{0,| y-f(x)|-&} (6)

Observed values

»
y

X

Figure 4 - Parameters for Support Vector Regression

Equation (6) defines € tube (shown in Figure 4). The
loss is zero if the predicted value is within the tube.
If it is outside the tube, the loss is the magnitude of
the difference between the predicted value and the ra-
dius ¢ of the tube. Both C and ¢ are user-determined
parameters. Two positive slack variables &, & are
used to cope with infeasible constraints of the opti-
mization problem. To get the estimation of w and b,
Equation (5) can be transformed to a primal objective
function (7).

Min) = S|w [P+ C,;(g + &) (7)

Vi-w-O(x)-b<e+&
staw - O(x)+b-yi<e+§;
&,&6=0
This constrained optimization problem is solved by
using the following primal Lagrangian form:

L= %H w P+ C'ZS;(S,-* +&)- Zs:l(ﬂifi +7i&0)-

=Y ai(e+&i-yi+w-O(xi)+b)-
=1

i

-ia?(s+$*-yi-w~®(x,-)+b) (8)
i=1

where L is the Lagrangian, and 7:, 7i, @i, @i are La-

grange multipliers. Hence the dual variables in Equa-

tion (8) have to satisfy the positive constraints.

i, aiai =0 9)
The above problem can be converted into a dual

problem where the task is to optimize the Lagrangian

multipliers, @; and «i. The dual problem contains a

quadratic objective function of @; and @i with one lin-
ear constraint:

Ma = 3" (el - )i - a)(@(x) ©(x) +

ij=1

S S
+D ai(yi-e)- Y ai(yi+e) (10)
i=1 i=1
S S .
S-S
i=1 i=1
st.|]0=a;=C
O<ai<C
S
Let w- Y (ai-ai)xi=0 (11)
i=1
S
Thus, f(x) = Y (ai-ai)D(x))- D(x;)+ b (12)
i=1

By introducing kernel function K(x;,x;), Equation
(12) can be rewritten as follows:

f(x) = zs:(a/,--af)K(xi,xj)+ b

i=1

(13)

where K(x;,x;) is the so-called kernel function which
is equal to the inner product of two vectors x; and
Xj in the feature space ®(x) and ®(x;), that is
K(xi,xj) = D(xi)- D(x)).

Without having to compute map @(x), the ker-
nel function is proven to simplify the use of mapping.
Some popular kernel functions are the linear kernel,
polynomial kernel and the radial-basis function (RBF)
kernel. Using different kernel functions, one can
construct different learning machines with arbitrary
types of decision surfaces. In general, the RBF kernel,
as a non-linear kernel function, is a reasonable first
choice [26, 27]. Thus, the RBF kernel is chosen in this
work:

Xi - Xj 2
K(xi,xj) = exp(—i| 202’ | )

where ¢ is a parameter which determines the area of
influence this support vector has over the data space.

As user-determined parameters in the SVR model
and the RBF kernel, C, € and ¢ have to be defined
before model estimation. To reduce the search space,
referring to previous literature using SVM [28, 29], it
is recommended to use the constraints of the three
parameters which attribute respectively to the range
cel27°2°%], e€[27,27], and o €[0,2]. Then the

(14)
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optimal values of these three parameters are calcu-
lated by employing exhaustive search method. The
values with which the minimum RRMSE of the model
is generated are taken as the optimal values. RRMSE
(Relative Root Mean Square Error) is a statistic for ex-
amining the goodness-of-fit of a model. It is calculated

by
(4 1 (6-6Y
RRMSE(Q) = /ﬁj—1<7) )

5.2 Comparing SVR and Hazard model

Instead of applying the Hazard model [30], which is
often used in duration modelling, this paper introduc-
es SVR and compares the performances of these two
methods in TThomework, T Twork-home @nd ADpefore&ADpost
model. By using streg() function in Stata and the SVM
Toolbox for Matlab respectively, both the Hazard and
SVR models are estimated [20, 31, 32]. The prediction
accuracies of TThomework, T Twork-home @Nd ADpefore&ADpost
models are shown in Table 4. As mentioned above, the
lower value of RRMSE represents the higher goodness-
of-fit of the model [33]. Since all the RRMSE values of
the three SVR models are accordingly lower than that
of the Hazard models, SVR is chosen to be employed in
the travel time and activity duration modelling.

5.3 Estimation results

Beside TThomework, TTworkhome a@nd ADbefore&ADpost
model, the estimation results of the other five travel
time and activity duration prediction models are
shown in Table 4. RRMSE indicates that the forecast
accuracies of all the models are acceptable, with that
Of ADwork-based model and ADpefore&ADpost model being
lower than the others. The travel distance is an im-
portant factor in both travel time and activity duration
decisions, as it has significant impact on all the depen-
dent variables. Travel mode, a proxy of travel speed,
has influence on all the dependent variables except
travel time of work-based sub-trip as well as activity
duration of before-work&post-work trips. One possible
reason is that most of the work-based sub-trip and
before-work&post-work trips are short-distance trips,
and 55.40% of them are made by walking. This results
in the insignificant effect of traffic mode on travel time
and activity duration. Moreover, the results show that
the departure time has impact on the travel time of
home-to-work commute trip and work-based sub-tour,
which indicates that the traffic condition at different
times of day will affect the travel time. In addition, the
influence of travel departure time (or stop arrival time)
in activity duration models (including ADnwstop&ADwhstop
model and ADpefore&ADpost model) shows that commut-
ers will decide how long to stay in an activity partly
based on the arrival time.

6. PREDICTION OF THE COMMUTE ACTIVITY-
TRAVEL AGENDA

The model system developed can be directly ap-
plied to predict daily commute activity-travel schedule.

Here is an example: the first member in the fam-
ily with ID number 0101040**** in our sample, is a
35-year old blue-collar worker, who earns 1501-2500
RMB every month. He had a typical commute activity-
travel pattern on the survey day, which is composed of
one morning and evening commute trip with one stop
respectively, two work-based sub-tours, a before-work
tour and two post-work tours. To examine the devel-
oped model system, only the first work-based sub-tour
and post-work tour will be considered. According to
the basic travel information of this respondent (shown
in Table 5), his real daily commute schedule can by
mapped in Figure 5. In comparison, his predicted daily
commute activity-travel schedule is reported in Table 5
and Figure 6.

The results indicate that the typical daily commute
schedule can be predicted by the model system de-
veloped in this paper with high accuracy. The maxi-
mum error for travel time and activity duration predic-
tion in the above example is 4.69 minutes and 13.74
minutes, while the minimum error is 0.27 and 0.03,
respectively. Furthermore, the hit ratio of the travel
departure time and stop arrival time choice models
is 57%. This indicates that there are some limitations
with the Ordered Probit model, which will be detailed
later. As for two of the models that produced wrong
predictions, i.e., TDworkhome and SAwork-home, the fore-
casted time ranges are all later than the observed val-
ue of our sample data. One potential reason may be
that this commuter did not choose a common sched-
ule for work-to-home commute trip as well as the stop
during this trip, i.e., these two time points are a little
earlier than the regular times, which are commonly af-
ter 16:30 p.m. according to the survey data.

The results also reveal that the prediction accura-
cies of SVR models are higher than those of the Or-
dered Probit models. The main reason is that we divid-
ed the natural continuous departure and arrival time
into several discrete time intervals, and the number of
alternative time intervals is heuristically determined.
More alternatives would potentially increase the pre-
diction accuracy, but significantly increase the com-
plexity of the model.

7. CONCLUSION

In this paper, a model system of commuters’ daily
activity-travel time allocation has been constructed.
The Ordered Probit model is employed for travel depar-
ture time and stop arrival time forecast, and Support
Vector Regression is used in travel time and activity
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Table 5 - Observed and predicted values for daily commute time allocation

Basic travel information Travel deparifure t.lme Travel time Activity duration
and stop arrival time

o) ) [ ) ) [} )

e 9 = = = = = =
Activity-travel pattern S ® S g e 3| %2 83| %9
2¢| o = ) o 5| 55| o5 | ©v5
T < o a Q 2 Q< 2 <= Q c 2 <

—=| s Q c 5 Z 3] - 3]
o o [} S Q é S é Q é ko] g

Y = 8 o 8 o 2 o

= o a o a o o
Before-work trip 1.00 | Walk | Maintenance | 6:00 (6:00, 7:30] 20 17.00 20 19.97

Home-to-work commute trip | 1.50 | Walk Work 7:35 (7:30, 9:00] 20 19.25 - -
Home-to-work stop 0.30 = Maintenance | 7:49 (8:00, 9:00] - - 6 7.55
Work-based sub-tour 0.50 | Bus Work 9:30 [9:00, 11:00] 5 9.69 45 31.26

Work-to-home commute trip | 1.50 | Auto Other 15:47 | (16:00, 17:30] 7 7.27 - -
Work-to-home stop 0.16 - Maintenance | 16:02 | (16:30, 18:00] - - 2 3.23
Post-work trip 0.20 | Bus | Maintenance | 18:30 | [18:00, 19:00] 5 4.20 20 18.23

1 «” represents that there is no significant value for the item.

duration modelling. Time allocation of the typical daily
commute activity-travel pattern is predicted with the
model system.

This work develops a model system that can be
used to predict the time allocation decisions of all
the activity-travel segments (including stops) in a typi-
cal commute day, and it focuses on temporal pattern
learning and modelling, which cannot only enhance the
model’s prediction accuracy, but also makes it more
suitable for analysis of time-related policies. By intro-
ducing the Support Vector Regression, it also makes
a methodological contribution in enhancing prediction
accuracy of the travel time and activity duration pre-
diction. This work also serves as a foundation on which
future models of full-scale daily activity-travel pattern
can be built.

Study results can be applied to a wide range of
Transportation Demand Management (TDM) policies,
especially the measures aimed at reducing commute
trips, such as flexible working hours. Flexible working

hours provide commuters with a wide span of depar-
ture time choices. The model system can then be ap-
plied to predict the commuters’ travel time based on
each departure time alternative. The predicted travel
time can be used to indicate the optimal departure
time and thus the development of flexible working
hour program targeting this departure time. This study
is also essential for planning the development and
construction of new transportation infrastructure by
providing predicted temporal travel demands. More-
over, the temporal travel demand information can be
integrated in the traveller information system to help
people make better travel decisions.

One limitation of the current study is that the pre-
diction accuracy of the discrete choice model is lower
than the continuous model, as it divides the naturally
continuous time into artificially defined time periods.
To address this problem, we may try to use more con-
tinuous models instead of discrete choice models in
daily time allocation. For example, we may employ SVR

Home-to-work commute

Before-work pattern

Stop Work
@ >@-
7:35 T7:49-7:55 8:01 9:30

Work-based sub-tours

Work-to-home commute Post-work pattern

Work Stop

- @ °
15:47 16:02-16:04 16:06

10:25

Figure 5 - Observed daily commute time allocation

Home-to-work commute

Before-work pattern

Stop Work

7:30-9:008:00-9:00 7:57-9:27 9:00-11:00
8:08-9:08

Work-based sub-tours

Work-to-home commute Post-work pattern

Work Stop Home 18:04-19:04

18:00-19:00
18:26-19:26

9:51-11:51 16:00-17:30 16:30-18:0016:11-17:4 18:22-19:22

16:33-18:03

Figure 6 - Predicted daily commute time allocation
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to examine how long it will take for a commuter to ar-
rive to the first stop after leaving home for work. Then
the stop arrival time of home-to-work trip can be calcu-
lated with travel departure time of home-to-work trip +
this time interval, instead of being modelled with a dis-
crete choice model directly. By changing the discrete
models to continuous models, the prediction accuracy
of the daily time allocation model system can increase.
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