
Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369 359

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

ROBERT MITTERMAYR
E-mail: robert@auto.tuwien.ac.at
JOHANN BLIEBERGER
E-mail: blieb@auto.tuwien.ac.at
TU Vienna, Institute of Computer-Aided Automation
Treitlstr. 1-3, 1040 Vienna, Austria
ANDREAS SCHÖBEL
E-Mail: andreas.schoebel@tuwien.ac.at
TU Vienna, Institute of Transportation
Karlsplatz 13/230, 1040 Vienna, Austria

Traffic Planning
Original Scientific Paper

Accepted: Nov. 14, 2011
Approved: Oct. 3, 2012

KRONECKER ALGEBRA-BASED DEADLOCK ANALYSIS
FOR RAILWAY SYSTEMS

ABSTRACT

Deadlock analysis for railway systems differs in sev-
eral aspects from deadlock analysis in computer science.
While the problem of deadlock analysis for standard com-
puter systems is well-understood, multi-threaded embedded
computer systems pose new challenges. A novel approach
in this area can easily be applied to deadlock analysis in
the domain of railway systems. The approach is based on
Kronecker algebra. A lazy implementation of the matrix op-
erations even allows analysing exponentially sized systems
in a very efficient manner. The running time of the algorithm
does not depend on the problem size but on the size of the
solution. While other approaches suffer from the fact that
additional constraints make the problem and its solution
harder, our approach delivers its results faster if constraints
are added. In addition, our approach is complete and sound
for railway systems, i.e., it generates neither false positives
nor false negatives.

KEY WORDS

railway networks, deadlocks, deadlock avoidance, Kronecker
algebra

1. INTRODUCTION

The deadlock problem and its solutions were stud-
ied in the earliest days of computer science. Although
computer science borrowed several concepts and
namings from the railway domain such as semaphores
or tokens, this was not the case for the deadlock prob-
lem. Deadlocks must have been impending in railway
systems from the very beginning and railwaymen cer-
tainly were aware of them. In contrast to these facts,
no solutions were commonly known in the middle of
the 20th century. So computer scientists were the first

to study the problem intensively and to deliver ade-
quate solutions.

The following definition of a deadlock is given in [1]:
Deadlock: An impasse that occurs when multiple

processes are waiting for the availability of a resource
that will not become available because it is being held
by another process that is in a similar wait state.

For a deadlock to occur, four necessary conditions
were found [2]:
1. Mutual exclusion: a resource that cannot be used

by more than one process at a time.
2. Hold and Wait: processes already holding resourc-

es may request new resources held by other pro-
cesses.

3. No preemption: No resource can be forcibly re-
moved from a process holding it; resources can be
released only by the explicit action of the process.

4. Circular wait: two or more processes form a circular
chain where each process waits for a resource that
the next process in the chain holds.
If one of these conditions cannot be met, a dead-

lock cannot occur. Clearly all four conditions apply to
railway systems.

To handle deadlock problems one distinguishes
between deadlock prevention, deadlock avoidance,
and deadlock detection.

 – Deadlock prevention tries to remove one of the four
conditions above in order to make it impossible for
a deadlock to occur.

 – Deadlock avoidance utilizes certain information
about processes known in advance to decide
whether or not to allocate resources to processes.
Examples for deadlock avoidance algorithms in-
clude the Banker’s algorithm [3], Wait/Die, Wound/
Wait algorithms, and [4] to name a few.

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

360 Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369

 – When a deadlock is detected at runtime, a process
is terminated and restarted later on.
Deadlocks in railway systems attracted attention

when railway simulation systems became available.
Since simulations were supposed to run without hu-
man interaction, deadlocks became an obstacle. Ob-
viously, autonomous dispatching systems also suffer
from deadlock problems if no adequate solutions can
be found.

The outline of our paper is as follows. In Section 2
we contrast deadlocks in computer systems with
deadlocks in railway systems. Section 3 introduces
Kronecker algebra. Section 4 gives our standard sys-
tem model. In Section 5 we present a simple example.
Section 6 shows how our resulting graphs can be em-
ployed for finding optimal solutions. In Section 7 we
describe our lazy implementation of Kronecker opera-
tions. In Section 8 we extend our standard model in
order to solve several important practical problems. In
Section 9 we present experimental data. In Section 10
we relate our approach to other work, before we con-
clude our paper in Section 11.

2. DEADLOCKS IN COMPUTERS VS.
DEADLOCKS IN RAILWAY SYSTEMS

In railway systems trains, routes, and track sec-
tions correspond to processes, program code, and
shared resources in computer systems, respectively.

The table below shows major differences between
the deadlock problem in computer and railway sys-
tems.

From the table below it becomes obvious that
deadlock analysis methods and algorithms well-suit-
ed for standard computer systems cannot be simply
transferred to railway systems. However, safety-relat-
ed embedded systems show more resemblance to
railway system. This is the reason why we try to ap-
ply the approach we have developed for embedded
systems [4] to railway systems. We will show in this

paper that this approach is in fact well-suited for rail-
way systems.

In the following we will argue that only deadlock
avoidance makes sense in the domain of railway sys-
tems; deadlock prevention and deadlock detection
cannot be applied in this domain.

Deadlock prevention is done by ensuring that one
of the four necessary conditions stated above is not
fulfilled. It is easy to see that this cannot be done for
railway systems:
1. Mutual exclusion: Track sections have to be seized

by trains exclusively.
2. Hold and Wait: It is typical that a train occupies two

or more track sections at the same time.
3. No preemption: A track section cannot be removed

from a train “holding” it.
4. Circular wait: It is impossible to impose a strict or-

der on the track sections without posing the prob-
lem that some trains would seize all track sections
of their route from start to destination before they
start running.
Deadlock detection is of no interest for railway sys-

tems because “terminating a train” is no option.
The only remaining option is deadlock avoidance

which will be discussed in the rest of this paper.
Before we give an introduction to Kronecker alge-

bra, we state a few additional differences between
computer and railway systems:

 – Computer systems usually consist of a number of
processes (threads) and a number of shared re-
sources. In most cases the number of resources
is much smaller than the number of processes. In
railway systems the number of track sections is
usually much greater than the number of trains.

 – Besides the track sections being shared resources
in railway systems there are additional constraints
that have to be met. For example, connections and
overtaking have to be taken care of, tardy trains
may cause penalty, ...
While previous approaches perform poorly if addi-

tional constraints are added to the problem domain,

Computer systems Railway systems
In standard computer applications all resources are held
until the process terminates (not true for embedded
systems where processes may not terminate at all).

A train seizes a track section shortly before it en-
ters it, and holds it until it leaves it (which may
be long before it reaches its destination).

Program code consists of straight line
code, if, and loop statements.

Routes compare to straight line code; there may be
alternative routes which compare to if statements;
loops may be useful for model railroad applications.

If a multithreaded computer program contains
a deadlock, the program is erroneous.

If in a railway system it is possible to bypass a dead-
lock situation, then the system is correct. Deadlocks
are always possible, but can usually be bypassed.

A computer program is “correct” if we
can prove it deadlock-free.

A set of trains is schedulable if all pos-
sible deadlocks can be bypassed.

If a deadlock is detected, it is viable to termi-
nate a program and restart it later on (not true
for safety-related embedded systems).

Trains cannot simply be taken out of the overall system.

Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369 361

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

our approach delivers its results faster if constraints
are added. This makes it a very promising approach.
Details will be given in the following sections.

3. KRONECKER ALGEBRA – AN OVERVIEW

Kronecker product and Kronecker sum form Kron-
ecker algebra. In the following we define both opera-
tions, state properties, and give examples.

We define the set of matrices
M m mM L, ,i j i j != = ^ h" ,

where L denotes a set of labels such that , ,0L + is
a commutative monoid and , ,1L $ is a monoid. In the
remaining parts of this paper only matrices M M!
will be used, except where stated explicitly. Let o M^ h
refer to the order1 of matrix M M! . In addition we will
use n-by-n zero matrices Z z ,n i j= ^ h, where , :i j z 0,i j6 = .

Definition 1 (Kronecker product). Given an m-by-n
matrix A and a p-by-q matrix B, their Kronecker prod-
uct - denoted by A B7 - is an mp-by-nq block matrix
defined by

A B
a B

a B

a B

a B

,

,

,

,m

n

m n

1 1

1

1

7 h

g

j

g

h= f p.

Example 1:

Let

A
a
a

a
a

,

,

,

,

1 1

2 1

1 2

2 2
= e o and B

b
b
b

b
b
b

b
b
b

,

,

,

,

,

,

,

,

,

1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

= f p.

Kronecker product C A B7= is given by
a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

1 1 1 1

1 1 2 1

1 1 3 1

2 1 1 1

2 1 2 1

2 1 3 1

1 1 1 2

1 1 2 2

1 1 3 2

2 1 1 2

2 1 2 2

2 1 3 2

1 1 1 3

1 1 2 3

1 1 3 3

2 1 1 3

2 1 2 3

2 1 3 3

1 2 1 1

1 2 2 1

1 2 3 1

2 2 1 1

2 2 2 1

2 2 3 1

1 2 1 2

1 2 2 2

1 2 3 2

2 2 1 2

2 2 2 2

2 2 3 2

1 2 1 3

1 2 2 3

1 2 3 3

2 2 1 3

2 2 2 3

2 2 3 3

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

.

As stated in [5] the Kronecker product is also be-
ing referred to as Zehfuss product or direct product of
matrices or matrix direct product.2

Next we list some basic properties of the Kron-
ecker product. Proofs and additional properties can
be found in [6], [7], [8], [9]. Let A, B, C, and D be
matrices. The Kronecker product is non-commutative
because in general A B B A7 7! . It is permutation
equivalent because there exist permutation matrices
P and Q such that A B P B A Q7 7= ^ h . If A and B are
square matrices, then A B7 and B A7 are even per-
mutation similar, i.e., P QT= . The product is associa-
tive as

A B C A B C7 7 7 7=^ ^h h .
In addition, the Kronecker product distributes over

+, i.e.
A B C A B A C7 7 7+ = +^ h and

A B C A C B C7 7 7+ = +^ h .
The Kronecker product can be used to model

synchronisation. How this is done will be discussed
later.

Definition 2 (Kronecker sum). Given matrix A of or-
der m and matrix B of order n, their Kronecker sum
denoted by A B5 is a matrix of order mn defined by

A B A I I Bn m5 7 7= + ,
where Im and In denote identity matrices3 of order m
and n, respectively.

This operation must not be confused with the direct
sum of matrices, group direct product or direct product
of modules for which the symbol 5 is used, too.

Example 2:

We use matrices A and B from Example 1. The
Kron ecker sum A B5 is given by

A I I B3 27 7+ =

a
a

a
a

b
b
b

b
b
b

b
b
b

1
0
0

0
1
0

0
0
1

1
0
0
1

,

,

,

,

,

,

,

,

,

,

,

,

,

1 1

2 1

1 2

2 2

1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

7 7= + =e f e fo p o p

a

a

a

a

a

a

a

a

a

a

a

a

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

0

0
0

0
0

,

,

,

,

,

,

,

,

,

,

,

,

1 1

2 1

1 1

2 1

1 1

2 1

1 2

2 2

1 2

2 2

1 2

2 2

= +

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

+ =

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

a b
b
b
a

b
a b
b

a

b
b

a b

a

a

a b
b
b

a

b
a b
b

a
b
b

a b
0
0

0

0

0
0

0
0

0

0

0
0

, ,

,

,

,

,

, ,

,

,

,

,

, ,

,

,

, ,

,

,

,

,

, ,

,

,

,

,

, ,

1 1 1 1

2 1

3 1

1 2

1 2

1 1 2 2

3 2

1 2

1 3

2 3

1 1 3 3

1 2

1 2

2 2 1 1

2 1

3 1

1 2

1 2

2 2 2 2

3 2

1 2

1 3

2 3

2 2 3 3

=

+
+

+
+

+
+

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

.

In the following we list basic properties of the Kro-
necker sum of matrices A, B, and C. Additional prop-
erties can be found in [10]. The Kronecker sum is
non-commutative because for element-wise compari-
son in general A B B A5 5! . Anyway, it essentially
commutes because from a graph point of view, the
graphs represented by matrices A B5 and B A5 are
structurally isomorphic. In addition, we state a prop-
erty of the Kronecker sum which we call Mixed Sum
Rule.

Let the matrices A and C have order m and B and D
have order n. Then we have

A B C D A C B D5 5 5+ = + +^ ^ ^ ^h h h h.
A proof of the Mixed Sum Rule can be found in [4].

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

362 Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369

In addition, the Kronecker sum is associative (cf.
[4]), i.e.,

A B C A B C5 5 5 5=^ ^h h .
The associativity properties of the operations 7

and 5 imply that the k-fold operations
Ai

k
i17 = and Ai

k
i15 =

are well-defined.
The Kronecker sum calculates all possible inter-

leavings (see e.g. [11] for a proof). The following ex-
ample illustrates interleaving and how the Kronecker
sum handles it.

Example 3: Let matrices C and D be defined as fol-
lows:

C
a
b

0
0
0
0
0

0

0
= f p, D

c
d

0
0
0
0
0

0

0
= f p

As already mentioned above, there is a correspon-
dence between matrices and graphs. In general, a
directed labelled graph , ,G V E ne consists of a set
of labelled nodes V, a set of labelled directed edges
E V V#3 , and an entry node ne . In this paper we la-
bel the graph nodes simply by positive integers. The
correspondence between graphs and matrices – fre-
quently called adjacency matrices – is as follows. If
there exists an edge labelled a from node i to node
j, then the corresponding adjacency matrix M has
m a,i j = . If there is no edge between node i and node
j, then m 0,i j = . The graph corresponding to matrix C
from above is depicted in Figure 1, whereas the graph
of matrix D is shown in Figure 2. Now interpret C and
D as being trains and , ,a b c and d as being actions
of the trains with the following meaning: a denotes
train C enters track section Ta, b means train C has left
track section Ta, c denotes train D enters track sec-
tion Tb , and d means train D has left track section Tb .
All possible temporal interleavings of these actions are
shown in Table 1. In Figure 3 the graph represented by
the adjacency matrix C D5 is depicted. It is easy to
see that all possible temporal interleavings are gener-
ated correctly.

In general, by calculating the Kronecker sum of the
adjacency matrices of two graphs the adjacency ma-
trix of the Cartesian product graph [12] is computed
(cf. [13]).

Now assume that Ta and Tb denote the same track
section. It is clear that in this case the temporal inter-
leavings of Table 1 are no more valid. The trains have to
synchronise in order to perform their actions correctly.
This can be modelled by Kronecker product and an ad-
ditional matrix of the form

S
v
p0
0= e o

where p denotes the action “Enter the track section”
and v means “Train has left the track section”. The
correct system behaviour can be described by matrix
R C D S5 7= ^ h . The corresponding graph is shown in
Figure 4. It is interesting that the graph became decom-
posed into seven parts (sub-graphs). Clearly, only the
part reachable from the entry node is responsible for
the system behaviour, the other six parts can safely be
ignored. Thus we concentrate on the sub-graph with
entry node 1. Studying this sub-graph we see that now
the trains enter the track section one after the other.
Note that the two paths in the subgraph correctly mir-
ror the two cases where C enters the track section be-
fore D and vice versa. A proof that Kronecker product
models synchronisation correctly can be found in [4].
It is also worth noting, that parts unreachable from the
entry node always occur if synchronisation via Kron-
ecker product takes place. This observation gives rise
to the lazy implementation described in Section 7.

1

a

2

b

3

Figure 1

1

c

2

d

3

Figure 2

Table 1

Interleavings

a b c d$ $ $

a c b d$ $ $

a c d b$ $ $

c a b d$ $ $

c a d b$ $ $

c d a b$ $ $

1

2

3

Figure 3

D.c

D.c

D.c

4

5

6

7

8

9

C.a

C.a

C.a

C.b

C.b

C.b

D.d

D.d

D.d

Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369 363

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

4. SYSTEM MODEL

We model a general railway system S by a set of
track sections T T i r1i # #= " ,. Each track section Ti
is modelled by matrix

T v
p0
0i

i

i
= e o.

In addition, a railway system consists of a set of
trains L L j t1j # #= " ,. The route Rj of train Lj is a
sequence of track sections , ,T Tl ls1 f for l r1 n# # and
n s1 # # . Each route is modelled by a s s2 2# -matrix.

In particular, R r,j i k= ^ h. The set of routes is denoted by
R R j t1j # #= " ,.

The behaviour of railway system , ,S T L R is mod-
elled by

S R Tj
t

j i
r

i1 15 7 5= = =^ ^h h,
where during the evaluation of the Kronecker product
we let p p pi i i$= and v v vi i i$= .

The different paths in the graph corresponding to
matrix S mirror all possible behaviours of the railway
system in terms of temporal interleavings of the ac-
tions of trains, namely entering and leaving track sec-
tions.

From the discussion above and from [4] it is clear
that deadlocks appear as purely structural properties
of the underlying graph. Deadlocks manifest them-
selves as non-final nodes4 with no successors.

5. A SIMPLE EXAMPLE

In this section we give a small example on how
deadlocks can be avoided by our Kronecker algebra-
based approach.

In Figure 5 a typical scenario is shown that may lead
to a deadlock. The routes of the three involved trains
are given in Table 2. If train L3 enters track section T3
before the other trains move, a deadlock is unavoid-
able.

Table 2

Trains Routes

L1 , , , ,p v p v v3 1 4 3 4

L2 , , , ,p v p v v3 2 5 3 5

L3 , , , ,p v p v v3 5 1 3 1

The matrices for the three routes are set up as fol-
lows:

R

p
v
p
v
v

0
0
0
0
0
0

0
0
0
0
0

0

0
0
0
0

0
0

0
0
0

0
0
0

0
0

0
0
0
0

0

1

3

1

4

3

4

=

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

, R

p
v
p
v
v

0
0
0
0
0
0

0
0
0
0
0

0

0
0
0
0

0
0

0
0
0

0
0
0

0
0

0
0
0
0

0

2

3

2

5

3

5

=

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

1 2 3

11

7

15

6 9 14 18

8 10

Figure 4

4

5 13

1612

17

C.p

C.p C.p

D.p

D.pD.p

C.v

C.v

C.v

D.v

D.v D.v

L1

L2

L3

1

2 3 4

5

Figure 5

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

364 Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369

and R

p
v
p
v
v

0
0
0
0
0
0

0
0
0
0
0

0

0
0
0
0

0
0

0
0
0

0
0
0

0
0

0
0
0
0

0

3

3

5

1

3

1

=

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

.

The matrices for the five track sections have the
form

T v
p0
0i

i

i
= e o

for i1 5# # .
The order of the resulting matrix can be computed

by multiplying the order of the involved matrices, i.e.,
the order of matrices Rj and the order of matrices Ti .
In our example the resulting matrix will have order
6912 6 6 6 25$ $ $= . Due to synchronisation only a
small part of the resulting graph is reachable from the
entry node. Only this part – consisting of 42 nodes – is
displayed in Figure 6. To increase readability our imple-
mentation distinguishes between the following node
types:

 – Diamond nodes denote deadlocks or nodes from
which only deadlocks can be reached.

 – Solid nodes denote safe states. A state is safe if all
trains can perform their actions without having to
take into account the moves of other trains in the
system, provided that the track section which they
are to enter is not occupied by another train.5

 – From dotted nodes both diamond and solid nodes
can be reached.
If only deadlock avoidance is of interest, graphs like

that in Figure 6 can be scaled down. In fact, diamond
nodes are of no interest because we want to avoid
deadlocks. From the set of solid nodes only those are
of interest, which have dotted predecessors only. In
addition, we do not have to show the node labels, i.e.,
the matrix line numbers. If we eliminate the non-inter-
esting nodes from Figure 6, we obtain the graph in Fig-
ure 7. We call such graphs NDLS-graphs because they
contain no deadlock nodes and only a limited number
of safe nodes.

In order to avoid deadlocks the minimal number of
actions can be obtained by selecting a path from the
entry node to a solid node which is situated nearest
to the entry node. This, however, may not be the best
alternative. In the next section we elaborate on the
problem of finding the “cheapest” path.

In order to evaluate the quality of algorithms or
tools it is convenient to introduce false positives and
false negatives. Let us assume we have an algorithm
at hand that examines a system to find out whether
the system deadlocks or not. Then there are four pos-
sible outcomes.

Algorithm
says system
deadlocks

Algorithm says
system does
not deadlock

System
deadlocks okay False negative

System does
not deadlock False positive okay

It is worth noting that our approach does neither
deliver false positives nor false negatives6. Thus it is

1

37

70

197

397

1157

2325

3479

4627

4823 5777 4663

5023 5973 4696 5813

6173 4712 5846

4740 5862

4936 4788 5890

5136 4984 6086 5938

5327 5184 6286 6134

5515 5375 6477 6334

5708 5563 6665 6525

5756 6858 6713

6906

L3.p3

L3.v5 L2.v2 L1.v1

L1.p4

L1.v3

L2.p3
L2.v2

L2.v2

L2.p3 L3.p3

L3.v5

L3.v5

L3.v3

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v1

L3.v3

L3.p3

L2.p3

L2.p3

L2.p3

L2.p3

L2.v3

L2.v3 L2.v3

L2.v3

L2.v2

L2.v2

L2.v2

L2.p5

L2.p5

L2.p5

L2.p5

L2.v5

L2.v5 L2.v5

L2.v5

L2.v2

L3.p1

L3.p1

L1.v4
L1.v4

L1.v4

L1.v4

L1.v4L1.v4

L1.v4 L1.v4

L1.v4

L1.v4

L1.v4

L1.v4

L1.v4

L1.v4

L1.v4

L1.v4L1.v4

L1.v4

L2.p3
L1.p3

Figure 6

Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369 365

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

complete and sound. There is only one exception: In
case of alternative routes (cf. Section 8) deadlocks in
all possible paths will be reported although only one
path can be chosen by the train. This situation may
somehow be classified as reporting false positives.

For computer systems our approach can be modi-
fied such that it stops as soon as the first deadlock
is found7. For railway systems the algorithm may be
modified to stop as soon as a safe state is found.

6. AVOIDING DEADLOCKS UNDER
ADDITIONAL CONSTRAINTS

Our approach produces a graph which gives all
temporal interleavings of train moves. A short reflec-
tion shows that not all of these interleavings may
result in an “optimal” behaviour. However, a more
sophisticated analysis may choose to assign weights
to the edges of the graph. These weights can be cho-
sen such that the term “optimal” from above makes
sense. Weights may include temporal constraints
originating from physical properties of the trains such
as accelerating and braking characteristics depend-
ing e.g. on the weight of the train, or penalties due
to tardiness.

In any case, well-known algorithms such as those
of [14] or [15] can be applied to graphs with non-
negative weights to find the optimal (shortest) path.
Dijkstra’s algorithm performs in time quadratic in the
number of nodes of the graph. The Fredman & Tarjan
version uses time proportional to the sum of the num-
ber of edges and the number of nodes times the loga-
rithm of the number of nodes.

If only deadlock avoidance is of concern, the opti-
misations given in the previous section apply.

7. LAZY IMPLEMENTATION OF
KRONECKER ALGEBRA

Until now we primarily focused on a pure mathe-
matical model for deadlock analysis. An alert reader
will have noticed that the order of the matrices in-
creases exponentially in the number of trains. On the
other hand, we have seen that the Kronecker product
results in parts of the resulting matrix that cannot be
reached from the entry node of the corresponding
graph. This comes solely from the fact that synchro-
nisation excludes some interleavings. In addition, all
involved matrices are sparse (cf. [4]), such that space
saving data structures suggest them selves.

Choosing a lazy implementation [16] for the matrix
operations, however, ensures that, when extracting the
reachable parts of the underlying graph, the overall ef-
fort is reduced to exactly these parts. By starting from
the entry node and calculating all reachable succes-
sor nodes, our lazy implementation does exactly this.
Thus, for example, if the resulting graph’s size is linear
in terms of the involved trains, only linear effort will be
necessary to generate the resulting graph.

Our implementation distinguishes between two
kinds of matrices: Sparse matrices are used for rep-
resenting trains and track sections. Lazy matrices are
employed for representing all the other matrices, i.e.
those resulting from the operations of the Kronecker
algebra. Besides the employed operation, a lazy ma-
trix simply keeps track of its operands. Whenever an
entry of a lazy matrix is retrieved, depending on the
operation recorded in the lazy matrix, entries of the
operands are retrieved and the recorded operation is
performed on these entries to calculate the result. In
the course of this computation, even the successors of
nodes are evaluated lazily. Retrieving entries of oper-
ands is done recursively if the operands are again lazy
matrices, or it is done by retrieving the entries from the
sparse matrices, where the actual data resides.

In addition, our lazy implementation allows for
simple parallelising. For example, retrieving the en-
tries of left and right operands can be done concur-
rently. Exploiting this, we expect further performance
improvements for our implementation if run on multi-
core architectures. All examples in this paper have

L1.p3

L1.v1

L1.p4

L1.v3

L1.v4 L3.p3

L3.p3

Figure 7

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

366 Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369

been computed by our lazy implementation. The per-
formance of our implementation is discussed in Sec-
tion 9.

8. EXTENSIONS OF THE STANDARD MODEL

In this section we discuss how our standard model
defined in Section 4 can be extended in order to solve
certain important problems.

The first problem we consider occurs if the length
of a train is greater than the length of a track section.
Assume a route of a train containing three consecutive
track sections t1 , t2, and t3, where t2 is shorter than
the length of the train. In addition, assume that the
train occupies track section t1. If t2 were long enough,
the train’s moves would be , , , ,p v p v2 1 3 2 f In case of the
short track section the train’s moves are , , , ,p p v v2 3 1 2 f

It is clear that this approach can easily be extended
if more than three track sections are used by a train
simultaneously.

Furthermore, note that double slip switches can be
seen as two normal switches with a zero length track
section in between. Thus, routes containing double
slip switches represent typical examples of the meth-
od above.

Sometimes it is useful to model a railway system
from a more abstract view. For example one abstracts
away from the track details of a station and instead
would like to use only the fact that the station has a
capacity of holding c trains at the same time, where
each train is able to enter and leave the station inde-
pendently from the other trains in the station. Such a
station can be modelled by a c c1 1#+ +^ ^h h matrix of
the following form

v
p

v
p

v
v
p

0

0

0
0

0

0
0

0

0

0

0
0
0

0

h h h

g

g

g

g

j h

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

.

Thus, our approach is able to handle abstract views
as well. One can envisage even more abstract levels
such as abstracting whole railway lines to their capac-
ity. This allows to model nets of railway lines.

Sometimes it is useful when a train is allowed to
take alternative routes. This gives more freedom in
bypassing a potential deadlock situation. Since our
approach was developed for handling embedded com-
puter systems, it is able to handle alternatives which
are present as if-statements in computer programs.
Generating matrices that model alternative routes is
very easy. A line in the matrix representing a fork state
of a route has two successors, i.e., two non-zero en-
tries. Later on the different alternatives can be joined

and a single (straightforward) route continues. Clearly,
this works even for more than two alternative routes.

As already noted, our approach was developed for
embedded computer systems. Thus, it also supports
loop statements. Matrices modelling loops can be em-
ployed to model trains running in loops. This might be
of interest for model railroaders.

By adding further matrices we can model synchro-
nisation of trains which can be used to ensure connec-
tions and overtaking of trains. For example, assume
that we want to ensure that train A shall not leave
track section tA before train B leaves track section tB .
We introduce two “artificial track sections” d and e
for synchronisation with the usual operations , ,p v pd d e
and ve . In addition, we insert immediately in front of
the moves vA and vB the actions ,v pd e and ,p vd e , re-
spectively. Thus, the two trains are synchronised and
we are able to model connections correctly.

We conclude this section with a more elaborate
example containing some of the extensions described
above. In particular, it contains a double slip switch
(track section 7) and it shows how overtaking can be
modelled.

1 2

3

4 5

6

7 8

9 10 11L1
L2

L3

L4

Figure 8

The system is depicted in Figure 8. The routes are
defined as follows:

, , , , , , , , , ,R p v p p v v p v p v v1 3 2 7 8 3 7 10 8 11 10 11= ,
, , , , , , , , , , , ,R p v p v p p v v p v p v v2 2 1 9 2 7 8 9 7 10 8 11 10 11= ,
, , , , , , , ,R p v p v p v p v v3 5 10 4 5 2 4 1 2 1= , and
, , , , , , , , , , , , , ,R p v p v p v p p v v p v p v v4 10 11 5 10 6 5 7 9 6 7 2 9 1 2 1= .

Note that track section 7 has zero length; it origi-
nates from the double-slip switch located between
track sections 3, 9, 6, and 8.

Kronecker algebra calculations produce a graph
with 55,050,240 potential nodes. After the reductions
presented in Section 5 only 992 nodes are left.

Now we introduce additional constraints. We as-
sume that train L2 overtakes L1 and L4 overtakes L3
within the station. We need one additional “artificial
track section” for each train pair. The corresponding
operations are denoted by , , ,p v p12 12 13 and v13 . Now
the routes read as follows:

, , , , , , , , , , ,R p v p p v v p v p v vv1 3 2 7 8 3 7 10 8 11 10 1112=
, , , , , , , , , , , , ,R p v p v p p v v p v p v vp2 2 1 9 2 7 8 9 7 10 8 11 10 1112=
, , , , , , , , ,R p v p v p v p v vv3 5 10 4 5 2 4 1 2 113= , and
, , , , , , , , , , , , , , ,R p v p v p v p p v v p v p v vp4 10 11 5 10 6 5 7 9 6 7 2 9 1 2 113= .

Kronecker algebra produces 298,721,280 poten-
tial nodes. After the usual reductions, however, only

Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369 367

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

144 nodes are left (cf. Figure 9). This means that the
number of potential nodes has grown by a factor of
five, but the size of the solution has dropped by fac-
tor of approximately 6.8. The resulting NDLS-graph is
depicted in Figure 9.

This example shows that if constraints are add-
ed to a railway system, our approach delivers its
solution faster. This is rather atypical for recent ap-
proaches.

9. EXPERIMENTAL DATA

In this section we give experimental data for ten
examples. Let o S^ h and o C^ h refer to the order of the
adjacency matrix S, which is not computed by our lazy
implementation, and the order of the adjacency ma-
trix C of the resulting graph, respectively. o NDLS^ h de-
notes the order of the NDLS graph. In addition, k and r
refer to the number of trains and the number of track
sections, respectively.

Next we refer to the data depicted in Table 3. The
runtime of our implementation shows a strong cor-
relation to order o C^ h of the adjacency matrix C of
the resulting graph with a Pearson product-moment
correlation coefficient of 0.999027713. The correla-
tion coefficient between o NDLS^ h and the runtime is
0.9813607056. In contrast, the values of the purely
theoretical order o S^ h of the resulting adjacency ma-
trix S correlate to the runtime only with a correlation
coefficient of 0.2370050995.

These observations show that the runtime com-
plexity does not depend on the order o S^ h which grows
exponentially in the number of trains. We conclude this
section by stating that the collected data give strong
indication that the runtime complexity of our approach
is linear in the number of nodes present in the result-
ing graph.

Table 3

k r o S^ h o C^ h o NDLS^ h Runtime [s]

2 4 256 12 1 0.03
3 5 4800 30 8 0.097542
4 6 124416 98 20 0.48655
3 6 75264 221 32 1.057529
4 7 614400 338 48 2.537082
4 8 1536000 277 94 2.566587
4 8 737280 380 116 3.724364
4 13 298721280 2583 206 96.024073
4 11 55050240 3908 992 146.81
5 6 14929920 7666 1812 309.371395

10. RELATED WORK

Concerning Kronecker algebra probably the clos-
est work to ours was done by Buchholz and Kemper
[17]. It differs from our work in that we use our ap-
proach to avoid deadlocks. Buchholz and Kemper

Figure 9

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

368 Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369

worked on generating reachability sets in composed
automata and for describing networks of synchronized
automata. Both approaches employ Kronecker alge-
bra.

In [18] we used similar definitions of Kronecker al-
gebra. The approach is used for analysing the timing
behaviour of concurrent programs.

Although not closely related we recognize the work
done in the field of stochastic automata networks
(SAN) which is based on the work of [19] and in the
field of generalized stochastic Petri nets (GSPN) (e.g.
[20]) as related work. Compared to ours these fields
are completely different. Nevertheless, basic opera-
tors are shared and some properties influenced this
paper.

In [21] Banker’s algorithm [3] is modified such that
it can be employed for deadlock analysis in railway
systems. Since Banker’s algorithm has been designed
for standard computer systems it is not well-suited for
railway systems. For example, it may prohibit allocating
a resource (track section) although a potential dead-
lock can be bypassed. In contrast to our approach both
track sections and switches have to be modelled as
resources in [21].

An operations research approach is proposed in
[22] to do deadlock analysis in railroad systems.

In [23] Movement Consequence Analysis (MCA)
and Dynamic Route Reservation (DRR) are introduced
for deadlock analysis. Both are rule-based methods for
which correctness cannot be proved. It delivers false
positives.

An algorithm which can handle only simple railway
networks is given in [24]. In addition, it produces false
positives. The same restrictions apply to the approach
presented in [25].

Deadlock-free algorithms are presented in [26]. All
of them may generate false positives.

A coloured Petri net model is used in [27] to de-
scribe a railway network system and to derive the
traffic controller. Safeness and deadlock freedom are
guaranteed. A deadlock prevention strategy is defined
and expressed by a set of linear inequality constraints.
It is shown how collision and deadlock prevention con-
straints can be expressed as coloured generalised mu-
tual exclusion constraints and that the controller can
be implemented by a set of monitor places. It is how-
ever not clear how this approach can be extended to
find optimal solutions such as our approach suggests
(cf. Section 6).

In [28] a coloured Petri net model of a simple rail-
way station operation is constructed and Banker’s al-
gorithm is employed for deadlock avoidance. It turned
out that Banker’s algorithm is not able to handle a
large number of processes (trains) and resources
(track sections).

11. CONCLUSION

We have presented a Kronecker algebra-based ap-
proach for deadlock analysis in railway systems. It can
solve all important practical problems. By employing a
lazy implementation for the Kronecker matrix opera-
tions the solution is computed very efficiently.

By assigning weights to the edges of the resulting
graph various optimisations can be performed. This
includes optimisations due to physical properties of
the trains such as accelerating and braking charac-
teristics depending e.g. on the weight of the train, or
penalties due to tardiness.

The running time of the algorithm does not depend
on the problem size but on the size of the solution.
While other approaches suffer from the fact that ad-
ditional constraints make the problem and its solution
harder, our approach delivers its results faster if con-
straints are added.

ROBERT MITTERMAYR
E-mail: robert@auto.tuwien.ac.at
JOHANN BLIEBERGER
E-mail: blieb@auto.tuwien.ac.at
TU Wien, Institut für rechnergestützte Automation
Treitlstr. 1-3, 1040 Wien, Österreich
ANDREAS SCHÖBEL
E-mail: andreas.schoebel@tuwien.ac.at,
TU Wien, Institut für Verkehrswissenschaften
Karlsplatz 13/230-2, 1040 Wien, Österreich

ZUSAMMENFASSUNG

KRONECKER ALGEBRA BASIERENDE DEADLOCK-
ANALYSE VON EISENBAHN-DISPOSITIONSSYSTEMEN

Deadlock-Analyse für Eisenbahn-Dispositionssysteme
unterscheidet sich von Deadlock-Analyse in der Informatik
in mehreren Punkten. Während Deadlock-Analyse für Stan-
dard-Computersysteme im Allgemeinen gut verstanden ist,
stellen Eingebettete Systeme eine neue Herausforderung
dar. Ein neuer Ansatz aus diesem Bereich kann auf Eisen-
bahn-Dispositionssysteme angewandt werden. Der Ansatz
basiert auf Kronecker Algebra. Eine „Lazy Implementierung“
der Matrixoperationen erlaubt sogar die Analyse von expo-
nentiell wachsenden Systemen in sehr effizienter Art und
Weise.

Die Laufzeit des Algorithmus hängt nicht von der Prob-
lemgröße sondern von der Größe des Ergebnisses ab.
Während andere Ansätze durch zusätzliche Einschränkun-
gen langsamer werden, liefert unsere Methode das Ergeb-
nis schneller, sobald weitere Einschränkungen hinzukom-
men. Weiters ist unser Ansatz vollständig (complete) und
fehlerfrei (sound), d.h. es treten weder „false positives“ noch
„false negatives“ auf.

SCHLÜSSELWÖRTER

Eisenbahnnetze, Deadlocks, Deadlock-Vermeidung, Kron-
ecker Algebra

Promet – Traffic&Transportation, Vol. 24, 2012, No. 5, 359-369 369

R. Mittermayr, J. Blieberger, A. Schöbel: Kronecker Algebra-based Deadlock Analysis for Railway Systems

REFERENCES

1. A k-by-k matrix is known as square matrix of order k.
2. Knuth notes in [13] that Kronecker never published

anything about it. Zehfuss was actually the first pub-
lishing it in the 19th century [29]. He proved that
det det detA B A Bn m7 $=^ ^ ^h h h, if A and B are matrices
of order m and n, respectively, with entries from the
domain of real numbers.

3. The identity matrix In is an n-by-n matrix with ones on
the main diagonal and zeros elsewhere.

4. A final node corresponds to the destination of a route.
A final node of a railway system corresponds to the
state, where all trains have reached their destinations.

5. If a track section is occupied by another train, the
movement of the train wanting to enter may be de-
layed, but no deadlock can occur.

6. This is true for railway systems. It is not true for com-
puter systems because computer programs may e.g.
contain dead code, i.e., code that is never executed.
Our approach will report a deadlock even if it is con-
tained in dead code. Thus it will deliver false positives
for computer systems but no false negatives.

7. This makes sense because a computer system is con-
sidered erroneous if at least one deadlock is present.

LITERATURE

[1] Stallings, W.: Operating Systems, 4th Ed., Upper Saddle
River, New Jersey: Prentice-Hall, 2001

[2] Coffman, E. G. J., Elphick, M. J. and Shoshani, A.: “Sys-
tem deadlocks,” ACM Computing Surveys, Vol. 3, No. 2,
pp. 67-78, 1971

[3] Dijkstra, E. W.: “Een algorithme ter voorkoming van de
dodelijke omarming (EWD-108)”.

[4] Mittermayr, R. and Blieberger, J.: “Shared Memory
Concurrent System Verification using Kronecker Al-
gebra”, 2011. [Online]. Available: http://arxiv.org/
abs/1109.5522.

[5] Miller, J.: “Earliest Known Uses of Some of the Words
of Mathematics”, 2011. [Online]. Available: http://
jeff560.tripod.com/k.html. [Accessed 26 Sept. 2011]

[6] Bellman, R.: Introduction to Matrix Analysis, Classics
in Applied Mathematics, 2nd Ed., Society for Industrial
and Applied Mathematics, 1997

[7] Graham, A.: Kronecker Products and Matrix Calculus
with Applications, New York: Ellis Horwood Ltd., 1981

[8] Davio, M. “Kronecker Products and Shuffle Algebra”,
IEEE Trans. Computers, Vol. 30, No. 2, pp. 116-125,
1981

[9] Hurwitz, A.: “Zur Invariantentheorie”, Math. Annalen,
Vol. 45, pp. 381-404, 1894

[10] Plateau, B. and Atif, K.: “Stochastic Automata Network
For Modeling Parallel Systems”, IEEE Trans. Software
Eng., Vol. 17, No. 10, pp. 1093-1108, 1991

[11] Küster, G.: “On the Hurwitz Product of Formal Power
Series and Automata”, Theor. Comput. Science, Vol.
83, No. 2, pp. 261-273, 1991

[12] Imrich, W., Klavzar, S. and Rall, D. F.: Topics in Graph
Theory: Graphs and Their Cartesian Product, A K Pe-
ters Ltd, 2008

[13] Knuth, D. E.: Combinatorial Algorithms, The Art of Com-
puter Programming, Vol. 4A, Addison-Wesley, 2011

[14] Dijkstra, E. W.: “A note on two problems in connexion
with graphs”, Numerische Mathematik, Vol. 1, pp. 269-
271, 1959

[15] Fredman, M. L. and Tarjan, R. E.: “Fibonacci heaps
and their uses in improved network optimization algo-
rithms”, in 25th Annual Symposium on Foundations of
Computer Science, 1984

[16] Henderson, P. and Morris, J. J. H.: “A Lazy Evaluator”,
in Proceedings of the 3rd ACM SIGACT-SIGPLAN sympo-
sium on Principles on programming languages, 1976

[17] Buchholz, P. and Kemper, P.: “Efficient Computation
and Representation of Large Reachability Sets for
Composed Automata”, Discrete Event Dynamic Sys-
tems, Vol. 12, No. 3, pp. 265-286, 2002

[18] Mittermayr, R. and Blieberger, J.: Timing Analysis of
Concurrent Programs, In Proc. of 12th Int. Workshop on
Worst-Case Execution Time Analysis, 2012

[19] Plateau, B.: “On the Stochastic Structure of Parallel-
ism and Synchronization Models for Distributed Algo-
rithms”, ACM SIGMETRICS, Vol. 13, pp. 147-154, 1985

[20] Ciardo, G. and Miner, A. S.: “A Data Structure for the
Efficient Kronecker Solution of GSPNs”, in Proc. 8th
Int. Workshop on Petri Nets and Performance Models
(PNPM'99), 1999

[21] Cui, Y.: Simulation-Based Hybrid Model for a Partially-
Automatic Dispatching of Railway Operation, I. f. E. u.
Verkehrswesen, Ed., Universität Stuttgart: PhD thesis,
2010

[22] Martin, U.: Verfahren zur Bewertung von Zug- und
Rangierfahrten bei der Disposition, TU Braunschweig:
PhD thesis, 1995

[23] Pachl, J.: Steuerlogik für Zuglenkanlagen zum Einsatz
unter stochastischen Betriebsbedingungen, TU Braun-
schweig: PhD thesis, 1993

[24] Petersen, E. and Taylor, A.: “Line Block Prevention in
Rail Line Dispatch”, INFOR Journal, Vol. 21, No. 1, pp.
46-51, 1983

[25] Mills, G., Pudney, P. J., White, K. and Hewitt, J.: “The
effects of deadlock avoidance on rail network capacity
and performance”, in Proc. of the 2003 mathematics-
in-industry study group, 2003

[26] Lu, Q., Dessouky, M. and Leachman, R. C.: “Modeling
Train Movements Through Complex Rail Networks”,
ACM Transactions on Modeling and Computer Simula-
tion, Vol. 14, No. 1, pp. 48-75, 2004

[27] Fanti, M. P., Giua, A. and Seatzu, C.: “A deadlock pre-
vention method for railway networks using monitors for
colored Petri nets”, in Proc. of Int. Conf. on Systems,
Man and Cybernetics, 2003

[28] Zarnay, M.: “Solving deadlock states in model of rail-
way station operation using coloured Petri nets”, in
Proceedings of Symposium FORMS/FORMAT, 2008

[29] Zehfuss, J. G.: “Ueber eine gewisse Determinante,”
Zeitschrift für Mathematik und Physik, Vol. 3, pp. 298-
301, 1858

