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KRONECKER ALGEBRA-BASED DEADLOCK ANALYSIS  
FOR RAILWAY SYSTEMS

ABSTRACT

Deadlock analysis for railway systems differs in sev-
eral aspects from deadlock analysis in computer science. 
While the problem of deadlock analysis for standard com-
puter systems is well-understood, multi-threaded embedded 
computer systems pose new challenges. A novel approach 
in this area can easily be applied to deadlock analysis in 
the domain of railway systems. The approach is based on 
Kronecker algebra. A lazy implementation of the matrix op-
erations even allows analysing exponentially sized systems 
in a very efficient manner. The running time of the algorithm 
does not depend on the problem size but on the size of the 
solution. While other approaches suffer from the fact that 
additional constraints make the problem and its solution 
harder, our approach delivers its results faster if constraints 
are added. In addition, our approach is complete and sound 
for railway systems, i.e., it generates neither false positives 
nor false negatives.

KEY WORDS

railway networks, deadlocks, deadlock avoidance, Kronecker  
algebra

1. INTRODUCTION

The deadlock problem and its solutions were stud-
ied in the earliest days of computer science. Although 
computer science borrowed several concepts and 
namings from the railway domain such as semaphores 
or tokens, this was not the case for the deadlock prob-
lem. Deadlocks must have been impending in railway 
systems from the very beginning and railwaymen cer-
tainly were aware of them. In contrast to these facts, 
no solutions were commonly known in the middle of 
the 20th century. So computer scientists were the first 

to study the problem intensively and to deliver ade-
quate solutions.

The following definition of a deadlock is given in [1]:
Deadlock: An impasse that occurs when multiple 

processes are waiting for the availability of a resource 
that will not become available because it is being held 
by another process that is in a similar wait state.

For a deadlock to occur, four necessary conditions 
were found [2]:
1. Mutual exclusion: a resource that cannot be used 

by more than one process at a time.
2. Hold and Wait: processes already holding resourc-

es may request new resources held by other pro-
cesses.

3. No preemption: No resource can be forcibly re-
moved from a process holding it; resources can be 
released only by the explicit action of the process.

4. Circular wait: two or more processes form a circular 
chain where each process waits for a resource that 
the next process in the chain holds.
If one of these conditions cannot be met, a dead-

lock cannot occur. Clearly all four conditions apply to 
railway systems.

To handle deadlock problems one distinguishes 
between deadlock prevention, deadlock avoidance, 
and deadlock detection.

 – Deadlock prevention tries to remove one of the four 
conditions above in order to make it impossible for 
a deadlock to occur.

 – Deadlock avoidance utilizes certain information 
about processes known in advance to decide 
whether or not to allocate resources to processes. 
Examples for deadlock avoidance algorithms in-
clude the Banker’s algorithm [3], Wait/Die, Wound/
Wait algorithms, and [4] to name a few.
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 – When a deadlock is detected at runtime, a process 
is terminated and restarted later on.
Deadlocks in railway systems attracted attention 

when railway simulation systems became available. 
Since simulations were supposed to run without hu-
man interaction, deadlocks became an obstacle. Ob-
viously, autonomous dispatching systems also suffer 
from deadlock problems if no adequate solutions can 
be found.

The outline of our paper is as follows. In Section 2 
we contrast deadlocks in computer systems with 
deadlocks in railway systems. Section 3 introduces 
Kronecker algebra. Section 4 gives our standard sys-
tem model. In Section 5 we present a simple example. 
Section 6 shows how our resulting graphs can be em-
ployed for finding optimal solutions. In Section 7 we 
describe our lazy implementation of Kronecker opera-
tions. In Section 8 we extend our standard model in 
order to solve several important practical problems. In 
Section 9 we present experimental data. In Section 10 
we relate our approach to other work, before we con-
clude our paper in Section 11.

2. DEADLOCKS IN COMPUTERS VS. 
DEADLOCKS IN RAILWAY SYSTEMS

In railway systems trains, routes, and track sec-
tions correspond to processes, program code, and 
shared resources in computer systems, respectively.

The table below shows major differences between 
the deadlock problem in computer and railway sys-
tems.

From the table below it becomes obvious that 
deadlock analysis methods and algorithms well-suit-
ed for standard computer systems cannot be simply 
transferred to railway systems. However, safety-relat-
ed embedded systems show more resemblance to 
railway system. This is the reason why we try to ap-
ply the approach we have developed for embedded 
systems [4] to railway systems. We will show in this 

paper that this approach is in fact well-suited for rail-
way systems.

In the following we will argue that only deadlock 
avoidance makes sense in the domain of railway sys-
tems; deadlock prevention and deadlock detection 
cannot be applied in this domain.

Deadlock prevention is done by ensuring that one 
of the four necessary conditions stated above is not 
fulfilled. It is easy to see that this cannot be done for 
railway systems:
1. Mutual exclusion: Track sections have to be seized 

by trains exclusively.
2. Hold and Wait: It is typical that a train occupies two 

or more track sections at the same time.
3. No preemption: A track section cannot be removed 

from a train “holding” it.
4. Circular wait: It is impossible to impose a strict or-

der on the track sections without posing the prob-
lem that some trains would seize all track sections 
of their route from start to destination before they 
start running.
Deadlock detection is of no interest for railway sys-

tems because “terminating a train” is no option.
The only remaining option is deadlock avoidance 

which will be discussed in the rest of this paper.
Before we give an introduction to Kronecker alge-

bra, we state a few additional differences between 
computer and railway systems:

 – Computer systems usually consist of a number of 
processes (threads) and a number of shared re-
sources. In most cases the number of resources 
is much smaller than the number of processes. In 
railway systems the number of track sections is 
usually much greater than the number of trains.

 – Besides the track sections being shared resources 
in railway systems there are additional constraints 
that have to be met. For example, connections and 
overtaking have to be taken care of, tardy trains 
may cause penalty, ...
While previous approaches perform poorly if addi-

tional constraints are added to the problem domain, 

Computer systems Railway systems
In standard computer applications all resources are held 
until the process terminates (not true for embedded 
systems where processes may not terminate at all).

A train seizes a track section shortly before it en-
ters it, and holds it until it leaves it (which may 
be long before it reaches its destination).

Program code consists of straight line 
code, if, and loop statements.

Routes compare to straight line code; there may be 
alternative routes which compare to if statements; 
loops may be useful for model railroad applications.

If a multithreaded computer program contains 
a deadlock, the program is erroneous.

If in a railway system it is possible to bypass a dead-
lock situation, then the system is correct. Deadlocks 
are always possible, but can usually be bypassed.

A computer program is “correct” if we 
can prove it deadlock-free.

A set of trains is schedulable if all pos-
sible deadlocks can be bypassed.

If a deadlock is detected, it is viable to termi-
nate a program and restart it later on (not true 
for safety-related embedded systems).

Trains cannot simply be taken out of the overall system.
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our approach delivers its results faster if constraints 
are added. This makes it a very promising approach. 
Details will be given in the following sections.

3. KRONECKER ALGEBRA – AN OVERVIEW

Kronecker product and Kronecker sum form Kron-
ecker algebra. In the following we define both opera-
tions, state properties, and give examples.

We define the set of matrices 
M m mM L, ,i j i j != = ^ h" ,

where L  denotes a set of labels such that , ,0L +  is 
a commutative monoid and , ,1L $  is a monoid. In the 
remaining parts of this paper only matrices M M!  
will be used, except where stated explicitly. Let o M^ h 
refer to the order1 of matrix M M! . In addition we will 
use n-by-n zero matrices Z z ,n i j= ^ h, where , :i j z 0,i j6 = .

Definition 1 (Kronecker product). Given an m-by-n 
matrix A and a p-by-q matrix B, their Kronecker prod-
uct - denoted by A B7  - is an mp-by-nq block matrix 
defined by

A B
a B

a B

a B

a B

,
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Kronecker product C A B7=  is given by
a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

a b
a b
a b
a b
a b
a b

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

1 1 1 1

1 1 2 1

1 1 3 1

2 1 1 1

2 1 2 1

2 1 3 1

1 1 1 2

1 1 2 2

1 1 3 2

2 1 1 2

2 1 2 2

2 1 3 2

1 1 1 3

1 1 2 3

1 1 3 3

2 1 1 3

2 1 2 3

2 1 3 3

1 2 1 1

1 2 2 1

1 2 3 1

2 2 1 1

2 2 2 1

2 2 3 1

1 2 1 2

1 2 2 2

1 2 3 2

2 2 1 2

2 2 2 2

2 2 3 2

1 2 1 3

1 2 2 3

1 2 3 3

2 2 1 3

2 2 2 3

2 2 3 3

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

.

As stated in [5] the Kronecker product is also be-
ing referred to as Zehfuss product or direct product of 
matrices or matrix direct product.2

Next we list some basic properties of the Kron-
ecker product. Proofs and additional properties can 
be found in [6], [7], [8], [9]. Let A, B, C, and D be 
matrices. The Kronecker product is non-commutative 
because in general A B B A7 7! . It is permutation 
equivalent because there exist permutation matrices 
P and Q such that A B P B A Q7 7= ^ h . If A and B are 
square matrices, then A B7  and B A7  are even per-
mutation similar, i.e., P QT= . The product is associa-
tive as

A B C A B C7 7 7 7=^ ^h h .
In addition, the Kronecker product distributes over 

+, i.e.
A B C A B A C7 7 7+ = +^ h  and 

A B C A C B C7 7 7+ = +^ h .
The Kronecker product can be used to model 

synchronisation. How this is done will be discussed  
later.

Definition 2 (Kronecker sum). Given matrix A of or-
der m and matrix B of order n, their Kronecker sum 
denoted by A B5  is a matrix of order mn defined by

A B A I I Bn m5 7 7= + ,
where Im and In denote identity matrices3 of order m 
and n, respectively.

This operation must not be confused with the direct 
sum of matrices, group direct product or direct product 
of modules for which the symbol 5  is used, too.

Example 2:

We use matrices A and B from Example 1. The 
Kron ecker sum A B5  is given by
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In the following we list basic properties of the Kro-
necker sum of matrices A, B, and C. Additional prop-
erties can be found in [10]. The Kronecker sum is 
non-commutative because for element-wise compari-
son in general A B B A5 5! . Anyway, it essentially 
commutes because from a graph point of view, the 
graphs represented by matrices A B5  and B A5  are 
structurally isomorphic. In addition, we state a prop-
erty of the Kronecker sum which we call Mixed Sum 
Rule.

Let the matrices A and C have order m and B and D 
have order n. Then we have

A B C D A C B D5 5 5+ = + +^ ^ ^ ^h h h h.
A proof of the Mixed Sum Rule can be found in [4].
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In addition, the Kronecker sum is associative (cf. 
[4]), i.e.,

A B C A B C5 5 5 5=^ ^h h .
The associativity properties of the operations 7  

and 5  imply that the k-fold operations
Ai

k
i17 =  and Ai

k
i15 =

are well-defined.
The Kronecker sum calculates all possible inter-

leavings (see e.g. [11] for a proof). The following ex-
ample illustrates interleaving and how the Kronecker 
sum handles it.

Example 3: Let matrices C and D be defined as fol-
lows:

C
a
b

0
0
0
0
0

0

0
= f p, D

c
d

0
0
0
0
0

0

0
= f p

As already mentioned above, there is a correspon-
dence between matrices and graphs. In general, a 
directed labelled graph , ,G V E ne  consists of a set 
of labelled nodes V, a set of labelled directed edges 
E V V#3 , and an entry node ne . In this paper we la-
bel the graph nodes simply by positive integers. The 
correspondence between graphs and matrices – fre-
quently called adjacency matrices – is as follows. If 
there exists an edge labelled a from node i to node 
j, then the corresponding adjacency matrix M has 
m a,i j = . If there is no edge between node i and node 
j, then m 0,i j = . The graph corresponding to matrix C 
from above is depicted in Figure 1, whereas the graph 
of matrix D is shown in Figure 2. Now interpret C and 
D as being trains and , ,a b c  and d as being actions 
of the trains with the following meaning: a denotes 
train C enters track section Ta, b means train C has left 
track section Ta, c denotes train D enters track sec-
tion Tb , and d means train D has left track section Tb .  
All possible temporal interleavings of these actions are 
shown in Table 1. In Figure 3 the graph represented by 
the adjacency matrix C D5  is depicted. It is easy to 
see that all possible temporal interleavings are gener-
ated correctly.

In general, by calculating the Kronecker sum of the 
adjacency matrices of two graphs the adjacency ma-
trix of the Cartesian product graph [12] is computed 
(cf. [13]).

Now assume that Ta and Tb  denote the same track 
section. It is clear that in this case the temporal inter-
leavings of Table 1 are no more valid. The trains have to 
synchronise in order to perform their actions correctly. 
This can be modelled by Kronecker product and an ad-
ditional matrix of the form 

S
v
p0
0= e o

where p denotes the action “Enter the track section” 
and v means “Train has left the track section”. The 
correct system behaviour can be described by matrix 
R C D S5 7= ^ h . The corresponding graph is shown in 
Figure 4. It is interesting that the graph became decom-
posed into seven parts (sub-graphs). Clearly, only the 
part reachable from the entry node is responsible for 
the system behaviour, the other six parts can safely be 
ignored. Thus we concentrate on the sub-graph with 
entry node 1. Studying this sub-graph we see that now 
the trains enter the track section one after the other. 
Note that the two paths in the subgraph correctly mir-
ror the two cases where C enters the track section be-
fore D and vice versa. A proof that Kronecker product 
models synchronisation correctly can be found in [4]. 
It is also worth noting, that parts unreachable from the 
entry node always occur if synchronisation via Kron-
ecker product takes place. This observation gives rise 
to the lazy implementation described in Section 7.

1

a

2

b

3

Figure 1

1

c

2

d

3

Figure 2

Table 1

Interleavings

a b c d$ $ $

a c b d$ $ $

a c d b$ $ $

c a b d$ $ $

c a d b$ $ $

c d a b$ $ $

1

2

3

Figure 3

D.c

D.c

D.c

4
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C.a

C.a

C.a

C.b

C.b

C.b

D.d

D.d

D.d
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4. SYSTEM MODEL

We model a general railway system S by a set of 
track sections T T i r1i # #= " ,. Each track section Ti  
is modelled by matrix 

T v
p0
0i

i

i
= e o.

In addition, a railway system consists of a set of 
trains L L j t1j # #= " ,. The route Rj  of train Lj  is a 
sequence of track sections , ,T Tl ls1 f  for l r1 n# #  and 
n s1 # # . Each route is modelled by a s s2 2# -matrix. 

In particular, R r,j i k= ^ h. The set of routes is denoted by 
R R j t1j # #= " ,.

The behaviour of railway system , ,S T L R  is mod-
elled by

S R Tj
t

j i
r

i1 15 7 5= = =^ ^h h,
where during the evaluation of the Kronecker product 
we let p p pi i i$=  and v v vi i i$= .

The different paths in the graph corresponding to 
matrix S mirror all possible behaviours of the railway 
system in terms of temporal interleavings of the ac-
tions of trains, namely entering and leaving track sec-
tions.

From the discussion above and from [4] it is clear 
that deadlocks appear as purely structural properties 
of the underlying graph. Deadlocks manifest them-
selves as non-final nodes4 with no successors.

5. A SIMPLE EXAMPLE

In this section we give a small example on how 
deadlocks can be avoided by our Kronecker algebra-
based approach.

In Figure 5 a typical scenario is shown that may lead 
to a deadlock. The routes of the three involved trains 
are given in Table 2. If train L3 enters track section T3  
before the other trains move, a deadlock is unavoid-
able.

Table 2

Trains Routes

L1 , , , ,p v p v v3 1 4 3 4

L2 , , , ,p v p v v3 2 5 3 5

L3 , , , ,p v p v v3 5 1 3 1

The matrices for the three routes are set up as fol-
lows:

R

p
v
p
v
v

0
0
0
0
0
0

0
0
0
0
0

0

0
0
0
0

0
0

0
0
0

0
0
0

0
0

0
0
0
0

0

1

3

1

4

3

4

=

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

, R

p
v
p
v
v

0
0
0
0
0
0

0
0
0
0
0

0

0
0
0
0

0
0

0
0
0

0
0
0

0
0

0
0
0
0

0

2

3

2

5

3

5

=

J
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K
K
K
K
K
K
K

N
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O
O
O
O
O
O
O

1 2 3
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Figure 4
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Figure 5
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and R

p
v
p
v
v

0
0
0
0
0
0

0
0
0
0
0

0

0
0
0
0

0
0

0
0
0

0
0
0

0
0

0
0
0
0

0

3

3

5

1

3

1

=

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

.

The matrices for the five track sections have the 
form 

T v
p0
0i

i

i
= e o

for i1 5# # .
The order of the resulting matrix can be computed 

by multiplying the order of the involved matrices, i.e., 
the order of matrices Rj  and the order of matrices Ti .  
In our example the resulting matrix will have order 
6912 6 6 6 25$ $ $= . Due to synchronisation only a 
small part of the resulting graph is reachable from the 
entry node. Only this part – consisting of 42 nodes – is 
displayed in Figure 6. To increase readability our imple-
mentation distinguishes between the following node 
types:

 – Diamond nodes denote deadlocks or nodes from 
which only deadlocks can be reached.

 – Solid nodes denote safe states. A state is safe if all 
trains can perform their actions without having to 
take into account the moves of other trains in the 
system, provided that the track section which they 
are to enter is not occupied by another train.5

 – From dotted nodes both diamond and solid nodes 
can be reached.
If only deadlock avoidance is of interest, graphs like 

that in Figure 6 can be scaled down. In fact, diamond 
nodes are of no interest because we want to avoid 
deadlocks. From the set of solid nodes only those are 
of interest, which have dotted predecessors only. In 
addition, we do not have to show the node labels, i.e., 
the matrix line numbers. If we eliminate the non-inter-
esting nodes from Figure 6, we obtain the graph in Fig-
ure 7. We call such graphs NDLS-graphs because they 
contain no deadlock nodes and only a limited number 
of safe nodes.

In order to avoid deadlocks the minimal number of 
actions can be obtained by selecting a path from the 
entry node to a solid node which is situated nearest 
to the entry node. This, however, may not be the best 
alternative. In the next section we elaborate on the 
problem of finding the “cheapest” path.

In order to evaluate the quality of algorithms or 
tools it is convenient to introduce false positives and 
false negatives. Let us assume we have an algorithm 
at hand that examines a system to find out whether 
the system deadlocks or not. Then there are four pos-
sible outcomes.

Algorithm 
says system 
deadlocks

Algorithm says 
system does 
not deadlock

System  
deadlocks okay False negative

System does 
not deadlock False positive okay

It is worth noting that our approach does neither 
deliver false positives nor false negatives6. Thus it is 
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complete and sound. There is only one exception: In 
case of alternative routes (cf. Section 8) deadlocks in 
all possible paths will be reported although only one 
path can be chosen by the train. This situation may 
somehow be classified as reporting false positives.

For computer systems our approach can be modi-
fied such that it stops as soon as the first deadlock 
is found7. For railway systems the algorithm may be 
modified to stop as soon as a safe state is found.

6. AVOIDING DEADLOCKS UNDER 
ADDITIONAL CONSTRAINTS

Our approach produces a graph which gives all 
temporal interleavings of train moves. A short reflec-
tion shows that not all of these interleavings may 
result in an “optimal” behaviour. However, a more 
sophisticated analysis may choose to assign weights 
to the edges of the graph. These weights can be cho-
sen such that the term “optimal” from above makes 
sense. Weights may include temporal constraints 
originating from physical properties of the trains such 
as accelerating and braking characteristics depend-
ing e.g. on the weight of the train, or penalties due 
to tardiness.

In any case, well-known algorithms such as those 
of [14] or [15] can be applied to graphs with non-
negative weights to find the optimal (shortest) path. 
Dijkstra’s algorithm performs in time quadratic in the 
number of nodes of the graph. The Fredman & Tarjan 
version uses time proportional to the sum of the num-
ber of edges and the number of nodes times the loga-
rithm of the number of nodes.

If only deadlock avoidance is of concern, the opti-
misations given in the previous section apply.

7. LAZY IMPLEMENTATION OF 
KRONECKER ALGEBRA

Until now we primarily focused on a pure mathe-
matical model for deadlock analysis. An alert reader 
will have noticed that the order of the matrices in-
creases exponentially in the number of trains. On the 
other hand, we have seen that the Kronecker product 
results in parts of the resulting matrix that cannot be 
reached from the entry node of the corresponding 
graph. This comes solely from the fact that synchro-
nisation excludes some interleavings. In addition, all 
involved matrices are sparse (cf. [4]), such that space 
saving data structures suggest them selves.

Choosing a lazy implementation [16] for the matrix 
operations, however, ensures that, when extracting the 
reachable parts of the underlying graph, the overall ef-
fort is reduced to exactly these parts. By starting from 
the entry node and calculating all reachable succes-
sor nodes, our lazy implementation does exactly this. 
Thus, for example, if the resulting graph’s size is linear 
in terms of the involved trains, only linear effort will be 
necessary to generate the resulting graph.

Our implementation distinguishes between two 
kinds of matrices: Sparse matrices are used for rep-
resenting trains and track sections. Lazy matrices are 
employed for representing all the other matrices, i.e. 
those resulting from the operations of the Kronecker 
algebra. Besides the employed operation, a lazy ma-
trix simply keeps track of its operands. Whenever an 
entry of a lazy matrix is retrieved, depending on the 
operation recorded in the lazy matrix, entries of the 
operands are retrieved and the recorded operation is 
performed on these entries to calculate the result. In 
the course of this computation, even the successors of 
nodes are evaluated lazily. Retrieving entries of oper-
ands is done recursively if the operands are again lazy 
matrices, or it is done by retrieving the entries from the 
sparse matrices, where the actual data resides.

In addition, our lazy implementation allows for 
simple parallelising. For example, retrieving the en-
tries of left and right operands can be done concur-
rently. Exploiting this, we expect further performance 
improvements for our implementation if run on multi-
core architectures. All examples in this paper have 
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been computed by our lazy implementation. The per-
formance of our implementation is discussed in Sec-
tion 9.

8. EXTENSIONS OF THE STANDARD MODEL

In this section we discuss how our standard model 
defined in Section 4 can be extended in order to solve 
certain important problems.

The first problem we consider occurs if the length 
of a train is greater than the length of a track section. 
Assume a route of a train containing three consecutive 
track sections t1 , t2, and t3, where t2 is shorter than 
the length of the train. In addition, assume that the 
train occupies track section t1. If t2 were long enough, 
the train’s moves would be , , , ,p v p v2 1 3 2 f In case of the 
short track section the train’s moves are , , , ,p p v v2 3 1 2 f

It is clear that this approach can easily be extended 
if more than three track sections are used by a train 
simultaneously.

Furthermore, note that double slip switches can be 
seen as two normal switches with a zero length track 
section in between. Thus, routes containing double 
slip switches represent typical examples of the meth-
od above.

Sometimes it is useful to model a railway system 
from a more abstract view. For example one abstracts 
away from the track details of a station and instead 
would like to use only the fact that the station has a 
capacity of holding c trains at the same time, where 
each train is able to enter and leave the station inde-
pendently from the other trains in the station. Such a 
station can be modelled by a c c1 1#+ +^ ^h h matrix of 
the following form

v
p

v
p

v
v
p

0

0

0
0

0

0
0

0

0

0

0
0
0

0

h h h

g

g

g

g

j h

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

.

Thus, our approach is able to handle abstract views 
as well. One can envisage even more abstract levels 
such as abstracting whole railway lines to their capac-
ity. This allows to model nets of railway lines.

Sometimes it is useful when a train is allowed to 
take alternative routes. This gives more freedom in 
bypassing a potential deadlock situation. Since our 
approach was developed for handling embedded com-
puter systems, it is able to handle alternatives which 
are present as if-statements in computer programs. 
Generating matrices that model alternative routes is 
very easy. A line in the matrix representing a fork state 
of a route has two successors, i.e., two non-zero en-
tries. Later on the different alternatives can be joined 

and a single (straightforward) route continues. Clearly, 
this works even for more than two alternative routes.

As already noted, our approach was developed for 
embedded computer systems. Thus, it also supports 
loop statements. Matrices modelling loops can be em-
ployed to model trains running in loops. This might be 
of interest for model railroaders.

By adding further matrices we can model synchro-
nisation of trains which can be used to ensure connec-
tions and overtaking of trains. For example, assume 
that we want to ensure that train A shall not leave 
track section tA before train B leaves track section tB .  
We introduce two “artificial track sections” d and e 
for synchronisation with the usual operations , ,p v pd d e  
and ve . In addition, we insert immediately in front of 
the moves vA and vB  the actions ,v pd e  and ,p vd e , re-
spectively. Thus, the two trains are synchronised and 
we are able to model connections correctly.

We conclude this section with a more elaborate 
example containing some of the extensions described 
above. In particular, it contains a double slip switch 
(track section 7) and it shows how overtaking can be 
modelled.

1 2

3

4 5

6

7 8

9 10 11L1
L2

L3

L4

Figure 8

The system is depicted in Figure 8. The routes are 
defined as follows:

, , , , , , , , , ,R p v p p v v p v p v v1 3 2 7 8 3 7 10 8 11 10 11= ,  
, , , , , , , , , , , ,R p v p v p p v v p v p v v2 2 1 9 2 7 8 9 7 10 8 11 10 11= , 
, , , , , , , ,R p v p v p v p v v3 5 10 4 5 2 4 1 2 1= , and 
, , , , , , , , , , , , , ,R p v p v p v p p v v p v p v v4 10 11 5 10 6 5 7 9 6 7 2 9 1 2 1= .

Note that track section 7 has zero length; it origi-
nates from the double-slip switch located between 
track sections 3, 9, 6, and 8.

Kronecker algebra calculations produce a graph 
with 55,050,240 potential nodes. After the reductions 
presented in Section 5 only 992 nodes are left.

Now we introduce additional constraints. We as-
sume that train L2 overtakes L1 and L4 overtakes L3  
within the station. We need one additional “artificial 
track section” for each train pair. The corresponding 
operations are denoted by , , ,p v p12 12 13  and v13 . Now 
the routes read as follows:

, , , , , , , , , , ,R p v p p v v p v p v vv1 3 2 7 8 3 7 10 8 11 10 1112=  
, , , , , , , , , , , , ,R p v p v p p v v p v p v vp2 2 1 9 2 7 8 9 7 10 8 11 10 1112=  
, , , , , , , , ,R p v p v p v p v vv3 5 10 4 5 2 4 1 2 113= , and 
, , , , , , , , , , , , , , ,R p v p v p v p p v v p v p v vp4 10 11 5 10 6 5 7 9 6 7 2 9 1 2 113= .

Kronecker algebra produces 298,721,280 poten-
tial nodes. After the usual reductions, however, only 
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144 nodes are left (cf. Figure 9). This means that the 
number of potential nodes has grown by a factor of 
five, but the size of the solution has dropped by fac-
tor of approximately 6.8. The resulting NDLS-graph is 
depicted in Figure 9.

This example shows that if constraints are add-
ed to a railway system, our approach delivers its  
solution faster. This is rather atypical for recent ap-
proaches.

9. EXPERIMENTAL DATA

In this section we give experimental data for ten 
examples. Let o S^ h and o C^ h refer to the order of the 
adjacency matrix S, which is not computed by our lazy 
implementation, and the order of the adjacency ma-
trix C of the resulting graph, respectively. o NDLS^ h de-
notes the order of the NDLS graph. In addition, k and r 
refer to the number of trains and the number of track 
sections, respectively.

Next we refer to the data depicted in Table 3. The 
runtime of our implementation shows a strong cor-
relation to order o C^ h of the adjacency matrix C of 
the resulting graph with a Pearson product-moment 
correlation coefficient of 0.999027713. The correla-
tion coefficient between o NDLS^ h and the runtime is 
0.9813607056. In contrast, the values of the purely 
theoretical order o S^ h of the resulting adjacency ma-
trix S correlate to the runtime only with a correlation 
coefficient of 0.2370050995.

These observations show that the runtime com-
plexity does not depend on the order o S^ h which grows 
exponentially in the number of trains. We conclude this 
section by stating that the collected data give strong 
indication that the runtime complexity of our approach 
is linear in the number of nodes present in the result-
ing graph.

Table 3

k r o S^ h o C^ h o NDLS^ h Runtime [s]

2  4       256   12    1   0.03
3  5      4800   30    8   0.097542
4  6    124416   98   20   0.48655
3  6     75264  221   32   1.057529
4  7    614400  338   48   2.537082
4  8   1536000  277   94   2.566587
4  8    737280  380  116   3.724364
4 13 298721280 2583  206  96.024073
4 11  55050240 3908  992 146.81
5  6  14929920 7666 1812 309.371395

10. RELATED WORK

Concerning Kronecker algebra probably the clos-
est work to ours was done by Buchholz and Kemper  
[17]. It differs from our work in that we use our ap-
proach to avoid deadlocks. Buchholz and Kemper 

Figure 9
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worked on generating reachability sets in composed 
automata and for describing networks of synchronized 
automata. Both approaches employ Kronecker alge-
bra.

In [18] we used similar definitions of Kronecker al-
gebra. The approach is used for analysing the timing 
behaviour of concurrent programs.

Although not closely related we recognize the work 
done in the field of stochastic automata networks 
(SAN) which is based on the work of [19] and in the 
field of generalized stochastic Petri nets (GSPN) (e.g. 
[20]) as related work. Compared to ours these fields 
are completely different. Nevertheless, basic opera-
tors are shared and some properties influenced this 
paper.

In [21] Banker’s algorithm [3] is modified such that 
it can be employed for deadlock analysis in railway 
systems. Since Banker’s algorithm has been designed 
for standard computer systems it is not well-suited for 
railway systems. For example, it may prohibit allocating 
a resource (track section) although a potential dead-
lock can be bypassed. In contrast to our approach both 
track sections and switches have to be modelled as 
resources in [21].

An operations research approach is proposed in 
[22] to do deadlock analysis in railroad systems.

In [23] Movement Consequence Analysis (MCA) 
and Dynamic Route Reservation (DRR) are introduced 
for deadlock analysis. Both are rule-based methods for 
which correctness cannot be proved. It delivers false 
positives.

An algorithm which can handle only simple railway 
networks is given in [24]. In addition, it produces false 
positives. The same restrictions apply to the approach 
presented in [25].

Deadlock-free algorithms are presented in [26]. All 
of them may generate false positives.

A coloured Petri net model is used in [27] to de-
scribe a railway network system and to derive the 
traffic controller. Safeness and deadlock freedom are 
guaranteed. A deadlock prevention strategy is defined 
and expressed by a set of linear inequality constraints. 
It is shown how collision and deadlock prevention con-
straints can be expressed as coloured generalised mu-
tual exclusion constraints and that the controller can 
be implemented by a set of monitor places. It is how-
ever not clear how this approach can be extended to 
find optimal solutions such as our approach suggests 
(cf. Section 6).

In [28] a coloured Petri net model of a simple rail-
way station operation is constructed and Banker’s al-
gorithm is employed for deadlock avoidance. It turned 
out that Banker’s algorithm is not able to handle a 
large number of processes (trains) and resources 
(track sections).

11. CONCLUSION

We have presented a Kronecker algebra-based ap-
proach for deadlock analysis in railway systems. It can 
solve all important practical problems. By employing a 
lazy implementation for the Kronecker matrix opera-
tions the solution is computed very efficiently.

By assigning weights to the edges of the resulting 
graph various optimisations can be performed. This 
includes optimisations due to physical properties of 
the trains such as accelerating and braking charac-
teristics depending e.g. on the weight of the train, or 
penalties due to tardiness.

The running time of the algorithm does not depend 
on the problem size but on the size of the solution. 
While other approaches suffer from the fact that ad-
ditional constraints make the problem and its solution 
harder, our approach delivers its results faster if con-
straints are added.
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ZUSAMMENFASSUNG 
 
KRONECKER ALGEBRA BASIERENDE DEADLOCK-
ANALYSE VON EISENBAHN-DISPOSITIONSSYSTEMEN

Deadlock-Analyse für Eisenbahn-Dispositionssysteme 
unterscheidet sich von Deadlock-Analyse in der Informatik 
in mehreren Punkten. Während Deadlock-Analyse für Stan-
dard-Computersysteme im Allgemeinen gut verstanden ist, 
stellen Eingebettete Systeme eine neue Herausforderung 
dar. Ein neuer Ansatz aus diesem Bereich kann auf Eisen-
bahn-Dispositionssysteme angewandt werden. Der Ansatz 
basiert auf Kronecker Algebra. Eine „Lazy Implementierung“ 
der Matrixoperationen erlaubt sogar die Analyse von expo-
nentiell wachsenden Systemen in sehr effizienter Art und 
Weise.

Die Laufzeit des Algorithmus hängt nicht von der Prob-
lemgröße sondern von der Größe des Ergebnisses ab. 
Während andere Ansätze durch zusätzliche Einschränkun-
gen langsamer werden, liefert unsere Methode das Ergeb-
nis schneller, sobald weitere Einschränkungen hinzukom-
men. Weiters ist unser Ansatz vollständig (complete) und 
fehlerfrei (sound), d.h. es treten weder „false positives“ noch 
„false negatives“ auf.

SCHLÜSSELWÖRTER

Eisenbahnnetze, Deadlocks, Deadlock-Vermeidung, Kron-
ecker Algebra
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1. A k-by-k matrix is known as square matrix of order k.
2. Knuth notes in [13] that Kronecker never published 

anything about it. Zehfuss was actually the first pub-
lishing it in the 19th century [29]. He proved that 
det det detA B A Bn m7 $=^ ^ ^h h h, if A and B are matrices 
of order m and n, respectively, with entries from the 
domain of real numbers.

3. The identity matrix In  is an n-by-n matrix with ones on 
the main diagonal and zeros elsewhere.

4. A final node corresponds to the destination of a route. 
A final node of a railway system corresponds to the 
state, where all trains have reached their destinations.

5. If a track section is occupied by another train, the 
movement of the train wanting to enter may be de-
layed, but no deadlock can occur.

6. This is true for railway systems. It is not true for com-
puter systems because computer programs may e.g. 
contain dead code, i.e., code that is never executed. 
Our approach will report a deadlock even if it is con-
tained in dead code. Thus it will deliver false positives 
for computer systems but no false negatives.

7. This makes sense because a computer system is con-
sidered erroneous if at least one deadlock is present.
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