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ABSTRACT 

The compound distribution is of interest for the study of in­
ventory problem, since it provides a more flexible description of 
the stochastic properties of the system compared to many other 
approaches such as renewal processes. However, due to the dif­
ficulties of obtaining analytical results for the compound distri­
bution, such a type of study is usually limited to searching for a 
good approximation for replacing the complex model. This pa­
per investigates the possibility to extend a previous stochastic in­
ventory model to cover a compound demand process. Trans­
form methods again play an imp01tant role in the analysis for 
capturing the stochastic prope1ties of the compound distribu­
tion. 
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1. INTRODUCTION 

In an inventory system, uncertainty usually comes 
from more than one source. For instance, a system 
could face stochastic disturbances both from the de­
mand and supply sides. In this circumstance, a com­
pound distribution is used or needs to be used since it 
may describe more precisely characteristics of the 
whole production-inventory system. 

A literature review shows that most researchers 
use a compound distribution to tackle problems 
in which both demand and lead times are uncertain 
(1-7]. Some authors (8, 9] have focused on the situa­
tion when the number of demand transactions and 
the size of each demand transaction are stochastic. 
Others (10, 11] consider all these three factors, lead 
time, number of demand transactions or size of each 
transaction, as random variables. Bagchi et a! [12] 
summarised analytical models of compound distribu­
tion for modelling production-inventory systems and 
they further discussed the possible distributions appli-
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cable for two categories of demand patterns, namely 
slow moving and fast moving items [12, 13]. But 
as many researchers have mentioned, analytical 
models are usually not tractable and further analysis 
of the production-inventory system becomes very 
complex. 

The second alternative to deal with a compound 
distribution is by using approximations and simplifica­
tions. For instance, in order to determine the control 
parameters in an inventory model, the demand during 
lead time is usually simplified as a normal distribution 
function and its mean and variance are estimated by 
calculating the first and the second order moments of 
the original distribution function. This simplification 
has at least two disadvantages, namely, it may not fit 
the actual distribution curve very well and it needs to 
be truncated for negative demand. Eppen and Martin 
[3] and Lau [6] pointed out that normalisation may not 
always be true and the consequent analysis may con­
tain substantial errors. They both provide examples 
showing how problems occur under the normalisation 
assumption. 

In order to avoid such disadvantages due to ap­
proximations, Lau [6] and other researchers [4, 5, 7] 
adopted other approximation distribution functions, 
such as the Pearson fami ly of distributions in order to 
get a better fit of real data. In this case, the moments 
of distribution need to be calculated up to the forth ­
-order to determine the parameters in the Pearson 
curve. It is claimed that inventory control parameters 
such as the reorder point is easily obtained by this ap­
proach. 

In our previous research [14-18], studies have been 
focused on a demand renewal process where the inter­
vals between demand events have identical independ­
ent distribution functions and demand arrives one unit 
at a time. Laplace transforms are used to capture the 
stochastic properties of stockouts and inventories. 
However, we are also interested in the safety stock 
problem when demand follows a more erratic pattern 
such as for a lumpy demand process. Ward [9] indi­
cated that a proper compound distribution is suitable 
for this purpose. 
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In the study of stochastic models, the moment-gen­
erating function plays an important role. But mo­
ment-generating functions have a close relationship 
with transforms. For instance, non-negative continu­
ous and discrete probability functions associate with 
the Laplace transform and z-transform respectively. 

In this paper we first discuss some basics of com­
pound distributions, especially how the first four mo­
ments arc calculated using the transformation 
method. Then we use our previous methodology [cf. 
16, 17] to optimise the production plan when demand 
follows a compound distribution. Other than deter­
mining the control parameters such as those in (s, Q) 
and (s, S) models, we mainly focus on the behaviour of 
the stockout function and the optimal safety stock of 
the optimal production plan. 

2. NOTATION 

.f(J(x))= Jcs)=f f(x)·e-sx dx 
0 

Laplace transform of any functionf(x), 
where sis the complex Laplace frequency 

I 1 {7(s)} = f(x) 

inverse of Laplace transform 

Z {g111 } =g(z)= I, zm g 111 
m=O 

z-transform of a function g, with a discrete 
variable. A more conventional definition is 

Z {g 111 } = I, z-117 g m· However, it makes no 
m=O 

difference in following studies and our defini­
tion provides a more compact expression. 

z-1 {g(z)} =gm 

inverse of .?-transform 

kth moment for the distribution with proba­
bility density functionf(x). Also exists for dis­
crete distribution 

00 

f/ x = E[X]= f x f(x)cL-.: 

first-order moment of[(x), also identified as 
the expectation ofA'C) 

00 

k f k fLXk =E[(X-!tx) ]= (X-!tx) f(x)d.:c 
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k'" order central moment for the distribution 
with probability density functionf(x), k = 1, 
2, ... f.J.x1 = 0. f-Lx2 is the variance and is also 
written as cr/ 

3. TRANSFORMS AND BASICS 
OF MOMENTS 

It is well known that the Laplace transform can be 
used as a moment-generating function for non-nega­
tive stochastic variables 

[
dn J] oo d 11 

• 
-- =lim f--e-sx f(x)d.x= 
dsn s-'iOods 11 

s=O 

=(-lt lim f x 11 e-sx [(x)dx= 
s -'iO 0 

=(-It f X 11 [(x)d'C=(-1 )11 E(X 11
) 

0 
(1) 

Similarly, for the discrete distribution function gm 
with stochastic variable M, we may use thez-transform 
to generate its moments. Replacingg111 into the above 
expression and substituting z = e-s, we obtain 

d" ( 
00 

) c/
11 

g =(-1)11 lim --
11 

I zm gm =(-It lim - ,-, = 
s-'iOds m=O s-'iOds 

d/1 g 
=lim---'~ 

Z-'il d (In z) 11 

or in a more explicit form 

z=l 

I 111 g/11 =E(M) 
m=O 

z=l 

I m(m-l)z 111
-

2 g 111 

m=O 

00 

z=l 

I, m (m-1 )(m-2) z 111
-

3 g nz 

z=l m=O 

=E(M 3 )-3E(M 2 )+2E(M) 

(2) 

(3a) 

(3b) 

(3c) 

z=l 

(3d) 
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Table 1 -Transforms of some distribution functions 

Probability density function 

Binomial B(n, {3) 
( : J f3x(l - f3t - x O:<> ,tJ :<> l 

x = 0, 1, ... , n 

Geometric G(,tJ) 
/3(1-Pt -1 

0 :<> f) :<>1 
X= 1, 2, ... 

Poisson P(J..) - A J..x 
J..>O 

e -
x! 

X= 0, 1, ... 

Negative Binominal NB(r, ,tJ) 
( x-l J ,tJ,.(l-,tJt - r 

0 :<> f) :<> 1 r - l 
x = r, r+l, .. . 

Exponential E(A.) 
J..e - J.x J.. >O 

x 2': 0 

Gamma G(J..) J..n n-l -Ax 
J..>O 

--x e 

x2':0 
r(n) 

z=l 

L m(m-l)(m-2)(m-3)zm- 4 g111 

m=O z=l 

=E(M 4 )-6E(M 3 )+11E(M2 )-6E(M) (3e) 

The transforms for important distributions are 
summarised in Table 1. The z-transform and the 
Laplace transform correspond with discrete and con­
tinuous distribution respectively. Essentially, discrete 
distributions can be interpreted as a special case of 
continuous distributions where impulses exist only at 
certain positions of equal distance. 

The central moments are also called the moments 
relative to expectation, which has been defined as 
fl-X =E[X]. From 

fl-Xk =E[(X-flx)k]= I (-1); (~)E[X 1 ]flxk-J 
j=O J 

we obtain the following relation between the central 
moments and moments 

f1- X2 =E[X2]-E[X]2 

f1- X3 =E[X 3 ]-3E [X 2 ]E[X]+2E[X] 3 

fl-X4 =E[X
4

]-4E[X 3 ]E[X]+ 

+6E[X 2 ]E[X] 2 -3E[X] 4 

(4a) 

(4b) 

(4c) 
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z-transform Laplace transform 

(1-,tJ + f3 zt 

,Bz 
1-(1-,tJ)z 

eA(z-1) 

c -ci ~f3)z r 
).. 

--
J..+s 

( J..~s r 
Alternatively, the above expressions can be written 

as 

E[Xz]=flxz +flxz 

E[X
3 

]= f1- X3 +3f1- X fl-X2 +flx3 

E [X 
4

] = ll X 4 + 4 f1- X3 f1- X + 6p X 
2 f1- X2 + f1- X 

4 

4. BASICS OF THE COMPOUND 
DISTRIBUTION 

(Sa) 

(5b) 

(5c) 

The following sum is defined to be the stochastic 
variable of a compound distribution [cf. 19] 

N 

W= I Yj (6) 
1=1 

where the Yi are mutually independent random 
variables with a common distribution with pdfj(y) and 
where N also is a random variable with a distribution 
independent of Yi and pdf g11 • Nand Yi represent the 
events and the size of each event respectively. N usu­
ally has a discrete distribution and Yi can be either dis­
crete or continuous. One example of such a compound 
distribution is the demand in a store where the num­
ber of customers and demand from each of them are 
both independent random variables. A second exam­
ple is the total demand during the lead time when the 
lead time and demand rate are both stochastic. The 
probability is therefore 

Pr(w:::;W <w+d w)= 

= L gl ·Pr(w:::;Yl +Yz + ... +Yt + <w+d w)= 
l=l 
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== "L gt ·U * f .. . * f)d w 
1=1 

(7) 

We notice that the above probability involves the 
convolution which can be expressed in terms of trans­
form in a compact "compound" way 

w(s) == .f {Pr(w$W < w+ d w)} == 
00 

- I -
==Lgi·f(s) == [Z{gt}]z=t(s)==g(f(s)) (8) 

1= 1 

Using Equation (1, 3 and 4), the above expression 
generates its moment as 

E[W 0 ]==w(O)==g(JcO))==g(l)==l (9a) 

E [W1]==-W' (0) == d [g(Jcs))]\ 
ds 

s= O 

Af ~-~ ~ ==-g . s=O ==f-lN f-ly (9b) 

d 2 [N(Y(s))] 
E[W 2 ]==-w(2)(0)== 2 ds s=O 

==-g" ·(f' )2 
+g'·J't=o ==E[N

2
]!-ll +E[N]f-ly2 (9c) 

d 2 [N(Y(s))] 
E[W 3]==-w(3)(0)==- 2 ds s=O 

==-(g'"·(l')3+3g"·l'·l"+g'·l'")l == 
s=O 

3 3 2 ==E[N ]f-ly +3E[N ]f-ly f-ly2 +E[N]f-ly3 

E[W4]==-w(4)(0)== d4 [g(Jcs))] 
ds 4 

s=O 

==(g''"·(l' )4 +6g"'·(l' )2 ·l"+ 

+3g''·cr·· )2 +4 g''·l' ·l'''+ g' ·f'··· )I = 
s=O 

==E[ N 4 
]f-ly 4 + 6E[N3 

]I-ll f-ly2 + 

(9d) 

+E[N2](3!-ly22 +4 f-ly f-ly3 )+E[N](f-ty4 -3f-ly22) 

(9e) 

Replace with Equation ( 4) and rearrange properly, 
the above expressions can be written as 

1-lw == 1-l N f-ly (lOa) 
f-lw2 == 1-l N2 !-ly 2 + 1-l N f-ly2 (lOb) 
f-lw3 ==f-tN3 !-ly 3 +f-lN f-ly3 +3f-lN2 f-ly f-ly2 (lOc) 

f-lw4 ==flN4 f-ly 4 +6f-lN3 I-ll f-ly2 + 
+ 6f.J, N 1-l N2 I-ll f-ly2 + 3f-lN2 f-ly2 2 +3f-t N2 f-ly2 2 + 
+ 4 1-l N2 f-ly f-ly3 + 1-l N f-ly4 - 3 1-l N f-ly2 2 (10d) 

The derivation is straightforward here since we 
have a mixture transform expression in Equation (8). 
In literature, the derivation up to the fourth-order mo­
ments of a compound distribution is only shown in [5, 
20] where a different method was adopted. In their ap-
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proach, first a random variable has been separated 
into two components and their dependence needs to 
be clarified. Consequently, an error is easily raised 
due to the improper assuming of component inde­
pendence. Nevertheless, our work verifies that only 
the results in [20] are correct. 

The usage of Equation (10) is two-fold. We can ei­
ther use it to approximate a compound distribution 
from real data, or for analysing how accurate the sim­
plification is under the circumstance that the individ­
ual distributions are known. Both methods are impor­
tant for investigation properties of a production-in­
ventory model. 

5. STOCKOUTANDINVENTORY 

At any time, the following relation holds for the 
stockout and inventory 

- -
B(t)==D(t) - P(t)+S(t), (11) 

where B(t) and S(t) are non-negative numbers and 
_!!ley ca!!:_not be both larger than zero at the same time. 
D and P are cumulative demand and production re­
spectively. In our study, we are interested in the ex­
pected stockout and expected inventory. These two 
expected values are related to each other as 

E( B)== 2. j · Pr( B== j) == 'I._(j- P) · Pr(D== j) 
j=O j=P 

P- 1 
== 'I.j ·Pr(D=j)-P 'I.Pr(D==j)+ L(P-j)·Pr(D==j) 

j =O j=O j =O 

==E(D)-P+E(S) (12) 

It is shown that expected stockout and expected in­
ventory are both non-negative numbers and they can 
both be positive at the same time. Furthermore, in 
such an inventory system, higher value of expected 
stockout also means higher value of expected inven­
tory, which is counterintuitive in some sense. 

6. THE STOCKOUT FUNCTION FOR 
A COMPOUND DEMAND PROCESS 
WITH DEMAND SIZE GEOMETRIC 
DISTRIBUTED 

In general, we know that the safety stock level in­
creases with the variance of demand in a stochastic 
process. In a compound demand process, the variance 
of demand increases with time so that its safety stock 
should not be at constant level as the role it plays in in­
ventory control models such as (s, Q) and (s, S). In our 
previous study [18], a renewal process with Gamma­
-distributed time interval is used to study how the vari­
ance of demand has an impact on safety stock. How­
ever, no quantitative conclusions have been drawn. 
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Now we follow up the same methodology in [16-18] to 
optimise production planning and search for the sa­
fety stock level for different times. This optimal pro­
duction plan can be basically used as master produc­
tion schedule (MPS). It is frozen within a certain time 
interval (planning horizon) when no rescheduling is 
committed. 

We consider a process where the interval of de­
mand transactions has an identical independent distri­
bution function with pdf f(t), or equivalently, where 
the number of demand transactions is a random vari­
able N(t). In order to make expressions easy to be fol­
lowed, we let the size in each demand transaction to be 
a discrete random variable Yi having a pdfgm. We also 
assume that for each demand transaction, the demand 
should be larger than zero. The probability of demand 
till timet equals j is 

Pr(D(t)=O) = Pr(N(t)=O), for j=O (13a) 
N(t) 

Pr(D(t)=j)=Pr( IYi=jiN(t)~j)= 

l l 
=( IPrN(t)=l)·Pr(IYi=j) , for j>O (13b) 

l=l 

It has been proven in [14, 15] thatf(t) and N(t) have 
the relation _, -
J!{Pr(N(t)=l)}=f (

1
-f) 

s 
(14) 

where timet is considered to be a variable and f is the 
Laplace transform off(t). 

- (1- f) 
J!{Pr(D(t)=O)}=--, for l=O (15a) 

s 

- j f' (1- f) l 
J!{Pr(D(t)=j)}= I ·Pr(LYi=j)= 

l=l s i=l 
j _, -

=If (1-f)·Pr(Z-1{g(z)t}=j), for l>0(15b) 
l=l s 

The complexity of above expression depends on 
the structure of the inverse of the convolution g ( z ). 
Without loss generality, a continuous pdf can replace 
gm in above expression. However, the inverse of 
Laplace transform needs to be adopted in this case. 
Further, we will concentrate on the case when the de­
mand transaction size follows a geometric distribution 

Y(n)=(1-,B)n-l ,B, n=1, 2, . . . (16) 

where ,B is a non-negative constant less than one. From 
Table 1, it is found that the inverse of its convolution is 
a negative binomial distribution 

Pr(z-
1 
{g (z)' l = j)=P{ z-1 

{ ( l-(~ ~ P)z J' )= + 
=G=~J,st (1-,B)j - l. (17) 
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We also observe from Table 1 that for the inverse 
of convolution, Poisson creates Poisson, binomial cre­
ates binomial and exponential leads to a Gamma dis­
tribution. With the negative binomial distribution in 
Equation (17), we obtain 

J!{ Pr(D(t)=j)}= f ft (1-f) (j-1),s t (1-,B)j-t = 
l=l s l-1 

=f(l-f),B f (j- l )(f,B)l-1(1-,Bp - 1)-(l-1)= 
s l=l l-1 

The expected stockout is 

E(B(s))= I j ·l!{Pr(D= j+P)} = 
j=O 

-[ -
= I jf (1-f),B (f,B+1-,B)J-t +P = 

j=O s 

f cJ ,B + 1- ,B) p 

s (1-f) ,B 

and the expected demand is 

(18) 

(19) 

- - f 
E(D(s))= I j-J!{Pr(D=j)}= . (20) 

j=O s (1-f) ,B 

The final value theorem together with the 
l'Hopital's rule show that the long-term difference be­
tween the expected cumulative demand and the ex­
pected stockout is 

lim E(D(t))-E(B(t))= 

' -7.= [ f fCf f3+1-,sl] -
= l~o s · s (1- f) ,B s (1- f) ,B = P · (21) 

For the sake of simplicity, we use the expected av­
erage cost as our objective function instead of the net 
present value approach when optimising the produc­
tion plan. This function consists of three terms of 
costs, namely the average setup cost, the expected in­
ventory holding cost and the expected stockout cost 

Kn h - b 
c = T+-y·E(S(T))+-y·E(B(t))' (22) 

where I<; hand bare parameters for the setup, holding 
and stockout costs respectively, n the number of 
batches and T the planning horizon. We also have the 
expected stockout during the whole planning horizon 
as (in time domain) 
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n 

E(B(T))= L,E(B(s))= 
k=O 

= i [fl{J(~(3+1=(3)p)]tk + l 
k=O s (l-f)(3 

lk 

(23) 

If we take the integral of Equation (12) and rear­
range the terms, we obtain the inventory during the 
whole planning horizon 

E (S(T)) =E( B(T))-E ( D(T))+E ( P(T)) = 

= i [£1{1<7 f3+l=f3l)]'k +l 
k=O s 2 (1-f)(3 

tk 
n 

-E(D(T))+ I. P(tk+1-tk) 
k=l 

(24) 

For E(B) follows the expression of Equation (19) , 
we have the following necessary optimisation condi-

(26) 

7. NUMERICAL EXAMPLES 

We use the simplest compound demand process, 
the Stuttering Poisson process [cf. 9 and 21], to dem­
onstrate the above model. A Stuttering Poisson pro­
cess has the demand size Geometric distributed and 
the interval of demand an exponential distribution. 
Therefore 

- A. 
f = A.+s , (27) 

where A. is the rate of demand. For in te1val of demand 
has this type of distribution, the number of demand ar­
rive has a Poisson distribution. Based on the formulas 
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we developed in Section 4, Table 2 summarises there­
sults of the first four moments of a Stuttering Poisson 
process. 

It is already well known that in such a compound 
Poisson process the mean and variance of cumulative 
demand increase proportionally with time. Neverthe­
less, this table also illustrates that the skewness and 
kurtosis are inversely related with time. When time 
tends towards infinite, skewness and kurtosis are re­
duced towards zero and 3, which are the values for a 
normal distribution. The expressions in the table also 
show that both skewness and kurtosis arc monotoni­
cally decreased when (3 increases. Big value (3 makes 
this compound distribution convergent more quickly 
towards normal distribution. Apparently, when .At and 
(3 arc small , the approximation of this compound dis­
tribution as a normal may create unreliable results. 

For the Stuttering Poisson process we have the 
stockout function in the time domain as 

E(B)=E(D)-P+Pe-A1 + 

+I.(P-j)I, 
1 

!3'(1-{3) 1-'. (28) 
P j (A. t)1 

e- J.t ( ·-1) . 
j =l 1= 1 l! l-1 

aE(B(T)) 
The expression of is derived as follows 

a Pk 

{
A. A. - } = £] - (- {3+(1-(3))pk = 

A.+s A.+s 

{ 
p ( - ) ) 

A. p - . . .A . 
= £1 - I. . (1-(3/- 1 (31 (- )1 = 

A. +s j = 0 1 A. +s 

(29) 

Based on the knowledge that the cumulative prob­
ability of a Gamma distribution can be written as the 
summation of a Poisson distribution, such as 

l {1 A. ;·+1} Jt A. (A. r)j - AI f - .(- ) = e dr= 
s A. +s 0 j! 

j (A. r)i 
=1-e- ?.1 L, - -= 

i=l i! ' 

then we have 

p (p) - [ j (A.t)i ] L, . (1-(3)?-j (3j 1-e-A1 L, - . -
. 0 1 . 0 l! 1= ~ 

(30) 

(31) 
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Table 2 - Summary of the first four moments of a Stuttering Poisson Process 

Distribution Poisson Geometric Stullering Poisson 

s P(At,fJ) = e-).t , for x= O 

P(J.t) =e-J.rAl .t G(/J) = /J(l -/Jt- 1 s P(At ,fJ) = 

Pdf x! 
=e-).' f Ati(~-l)fJj(I-fJt-I X= 1,2, ... 

X= 0,1, ... j=l j! j-1 

X= 1,2, .. . 

l ),{ 

Expectation JLJ ;, r - -
fJ fJ 

2"d-order central moment (variance),P2 
2(1-/J) At(2-fJ) 

AI ----;32 {32 
' 

3rd_order central moment, .U3 
(l-/J)(2-/J) }, { (JJ 2 -6/J + 6) 

AI p3 p3 

1 (2 -/J)2 1 (/J2 -6/J + 6)2 
skewness 1 -

},£ 1-fJ At (2-/J)3 

3 ;,2 l 2 (fJ 2 - 4 fJ + 4 )2 

(I - /J)(/J (fJ- 9)+ 9) 
-1 + 

4t 11-order central moment, .U4 AI +3(At)2 f3 
p4 At(4fJ2 - 18/J+ 15) 

+ 4 
fJ 

I fJ(fJ -9)+ 9 4 2/J+l 
kurtosis1 3+-

4(1-,8) 
3+-

AI (2- JJ)2 At AI 

' 
'Skewness=:~ ; 'Kurtosis= ~:i· Be aware that there are different definitions of skewness and kurtosis. 

Take integral one more time, we finally obtain 

E'VCT P;; -P)"}= 

£ (p)(l-f3l-j f3j (c-}_ ±[1-e-J.t ±(A.?']]= 
j=O 1 ).,i=O 1=0 l. 

I P(1-f3)?-jf3j· p (-) 

j = 0 1 

. r-- II+- I. I --= 
[ 

I j e- J.t j i ()., t / l 
)., i=O A. i=O 1=0 I! 

£ (p)(l-{3)?- j f3j 0 

j = 0 1 

[ 

l e-},t j (A.t)1 l 
. t-;:U+l)+-A.- 1~(j-L+1)-1 !- (32) 

Equations (25, 26, 27, and 31) constitute the model 
for optim ising the production pla n. We use numerical 
examples to study the safety stock and average cost of 
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the system. Table 3 gives the basic information of the 
product io n system. 

The mean demand ra te is kept constan t by fixing 
the ratio between). andf3. Then we investigate the fol­
lowing cases by changing these two parameters from 
0.2 to 0.95. Figures 1 and 2 illustrate that average cost 
increases with variance and the standard deviation of 
demand ra te. But no apparent quantitative relation 
has been observed. For demand closer to a lumpy pro­
cess where f3 is small and variance is big, the expected 
costs increase both for ho lding inventory and 
stockout. 

Table 3 - Parameters for the numerical example 

Parameter Value 

planning horizon T 100 

mean demand rate J../fJ I 

holding cost h J 

backlogging cost b 20,50 

setup cost K 100 

batch n u m bcr n 6 
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Figure 1 -Average cost vs. variance of demand rate 
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Figure 2 -Average cost vs. standard deviation 
of demand rate 
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Figure 3 - Safety stock vs. time at different variances 
of demand rate, b/h=20 
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Figure 4- Safety stock vs. square root of time 
at different variances of demand rate, b/h=20 

10 

dard deviation of the demand rate. Table 4 lists the 
outcome of regression. 

cumulative production immediately before the re- Table 5 -Linear regression of the curves in Figure 6 
plenishment and the expected cumulative demand. 
Figures 3 and 4 illustrate the behaviour of stockout as 
a function of time. Again, we notice there is a strong 
linear relationship between safety stock and the 
square root of time. This is more clearly demonstrated 
in Table 4, where regression functions and their coef­
ficients of determination R2 are listed . 

Table 4- Linear regression of the curves in Figure 4 

Variance of 
Linear regression curve R2 

demand rate 

9.00 y = 4.6737 X- 4.9309 0.9977 

4.71 y = 3.0915 X - 3.6661 0.9997 

3.00 y = 2.3081 X - 3.0559 0.9999 

2.08 y = 1.7665 X- 2.4953 0.9986 

1.50 y = 1.4211 X- 2.2408 0.9985 

1.11 y = 1.0760x -1,7370 0.9968 

We then use these regression curves to predicated 
safety stock at the same time for different variances of 
demand rate and analyse the impact from the vari­
ance. The results are shown in Figures 5 and 6. Appar­
ently, the safety stock increases with the variance and 
it is more likely that it increases linearly with the stan-
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Timet Linear regression curve R2 

80 y = 14.841 X - 7.9193 0.9994 

60 y = 12.640 x - 6.8862 0.9994 

40 y = 10.029 X- 5.6607 0.9993 

20 y = 6.6261 X- 4.0636 0.9990 

8. SUMMARY 

The paper aims to study a compound distribution 
in production-inventory system. By applying the trans­
form methods, the probability of demand can be de­
scribed in terms of a mixture of the Laplace and 
z-transforms. Consequently, it is easy to derive its mo­
ments and other parameters for the distribution, such 
as variance, skewness, and kurtosis . 

We have then investigated the possibility to extend 
our previous optimal production plan model to cover 
a stochastic compound demand process where the size 
of demand is Geometric distributed. The stockout 
function and optimisation equations are addressed in 
this case. For other compound demand process, we 
can basically follow the same methodology but the 
stockout function cannot be expressed in a compact 
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Figure 5- Safety stock vs. variance of demand rate 
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Figure 6 - Safety stock vs. standard deviation 
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way in terms of Laplace transform and probably more 
computation is required for reaching the results. 

Same as our previous study [18] numerical exam­
ples show again that the safety stock level is fairly lin­
ear with the square root of time. For our particular ex­
ample in this study, it is also strongly illustrated that 
the safety stock level has a linear relationship with the 
standard deviation of demand rate. 

For the future study, we would use this compound 
distribution for the situation when the lead time is a 
random variable in production-inventory system. 
High-order moments and their impact on optimal pa­
rameters in inventory control models, for instance (s, 
S) and (s, Q) models, are also of interest. 

SAZETAK 

Sf ozena distribucija je od interesa za ispitivanje problema 
zaliha, buduCi da daje fleksibilniji opis stohastickih svojstava 
sustava u usporedbi s mnogim drugim. pristupima kao sto je po­
stupak obnove. Medutim, zbog poteSkoca u dobivanju analitic­
kih rezultata za slozenu distribuciju, takav se tip ispitivanja 
obicno ogranicuje na trazenje dobre aproksimacije koja bi za­
mijenila kompleksni model. Ovaj rad istrazuje mogucnost pro­
S:irenja postojeceg stohastickog mode/a zalina na postupak slo­
zene potraznje. Metode transfonnacije ponovno imaju vaznu 
ulogu u analizi radi odredivanja stohastickih svojstava slozene 
distribucije. 
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